

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MODELING AND SIMULATION OF A NON-COHERENT
FREQUENCY SHIFT KEYING TRANSCEIVER USING A

FIELD PROGRAMMABLE GATE ARRAY (FPGA)

by

Konstantinos Voskakis

September 2008

 Thesis Advisor: Frank Kragh
 Thesis Co-Advisor: Peter Ateshian
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2008

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Modeling and Simulation of a Non-Coherent
Frequency Shift Keying Transceiver Using a Field Programmable Gate Array
(FPGA).
6. AUTHOR(S) Konstantinos Voskakis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In this thesis, the principals of Software Defined Radio are demonstrated by implementing a Binary Frequency Shift

Keying (BFSK) receiver-transmitter in a Field Programmable Gate Array (FPGA). After introducing the theory behind the Non-
Coherent BFSK demodulation implemented at the receiver, the design of transmitter and receiver is illustrated. The design
environment of choice is Mathworks’® Simulink and Xilinx® System Generator, a dedicated library for Mathworks’ Simulink. The
design is downloaded to a Virtex-4 FPGA.

The receiver is Non-Coherent (NC) in the sense that the receiver need not know the phase of the incoming signal. A
feedback circuit is responsible for both packet and bit synchronization. Also, the receiver is implemented using non-coherent
match filters instead of low pass filters which would be easier, but would degrade the performance. Finally, some interesting
experiences that were gained during the learning process are discussed.

In Appendix A, we evaluate different technological options in implementing communication modulating techniques and
Software Defined Radio. These options include Digital Signal Processors, Field Programmable Gate Arrays, General Purpose
Processors and Application Specific Integrated Circuits and a comparison between these choices is made.
.

15. NUMBER OF
PAGES

125

14. SUBJECT TERMS Software Defined Radio, Field Programmable Gate Array, Digital Signal
Processing Chip, Application Specific Integrated Circuit, Binary Frequency Shift Keying, Xilinx,
System Generator

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

MODELING AND SIMULATION OF A NON-COHERENT FREQUENCY SHIFT
KEYING TRANSCEIVER USING A FIELD PROGRAMMABLE GATE ARRAY

(FPGA)

Konstantinos Voskakis
Lieutenant Junior Grade, Hellenic Navy

B.S., Hellenic Naval Academy, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2008

Author: Konstantinos Voskakis

Approved by: Frank Kragh
Thesis Advisor

Peter Ateshian
Thesis Co-Advisor

Roberto Cristi
Second Reader

Jeffrey Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In this thesis, the principals of Software Defined Radio are demonstrated by

implementing a Binary Frequency Shift Keying (BFSK) receiver-transmitter in a Field

Programmable Gate Array (FPGA). After introducing the theory behind the Non-

Coherent BFSK demodulation implemented at the receiver, the design of both transmitter

and receiver is illustrated. The design environment of choice is Mathworks’® Simulink

and Xilinx® System Generator, a dedicated library for Mathworks’ Simulink. The design

is downloaded to a Virtex-4 FPGA.

The receiver is Non-Coherent (NC) in the sense that the receiver need not know

the phase of the incoming signal. A feedback circuit is responsible for both packet and bit

synchronization. Also, the receiver is implemented using non-coherent match filters

instead of low pass filters which would be easier, but would degrade the performance.

Finally, some interesting experiences that were gained during the learning process are

discussed.

In Appendix A, we evaluate different technological options in implementing

communication modulating techniques and Software Defined Radio. These options

include Digital Signal Processors, Field Programmable Gate Arrays, General Purpose

Processors and Application Specific Integrated Circuits and a comparison between these

choices is made.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ON SOFTWARE DEFINED RADIO..............................1
B. GOALS OF RESEARCH AND CONCEPTS ...1
C. METHODOLOGY AND SCOPE OF THE RESEARCH2
D. BENEFITS OF THE RESEARCH...2
E. ORGANIZATION OF THE THESIS..3

II. BINARY FREQUENCY SHIFT KEYI NG MODULATION SCH EME AND
CONVOLUTIONAL ENCODING ..5
A. BFSK MODULATION..5
B. CONVOLUTIONAL ENCODING ..9

III. DESIGN ENVIRONMENT ..13
A. SYSTEM GENERATOR ..13
B. ISE PROJECT MANAGER ...15
C. AVNET BOARD ..16

IV. DESIGN FLOW...19
A. TRANSMITTER..19

1. Preamble Subsystem..20
2. Data Input Subsystem..21
3. Modulation Subsystem ..22

B. RECEIVER ..23
1. Non-Coherent Matched Filter Subsystem24
2. Timing Circuit..26
3. Decoding Subsystem ..29

V. DESIGN VALIDATIONS, RESULTS AND TROUBLESHOOTING.................33
A. SYSTEM GENERATOR ..33
B. TROUBLESHOOTING AND LESSONS LEARNED...............................38

1. Transmitter...39
2. Receiver...40

VI. CONCLUSIONS ..45
A. SUMMARY OF THE WORK ..45
B. SIGNIFICANT RESULTS..45
C. SUGGESTIONS FOR FUTURE WORK..46

1. Limitation of the Design ..46
2. Suggestions..47

APPENDIX A. BACKGROUND ON FPGA AND TECHNOLOGIC
BACKGROUND ..49
A. BRIEF DESCRIPTION OF AN FPGA ...49
B. ADVANTAGES AND APPLICATIONS OF FPGAS................................52
C. FPGA VS. GPP...53
D. FPGA VS. DSP...54

 viii

E. FPGA VS. ASIC...56
F. DSP-ENHANCED FPGAS..57
G. THE ROLE OF FPGAS IN SDR – HOW TO COMBINE DSP-F PGA

COPROCESSOR ...59
H. BEYOND THESE TECHNOLOGIES, WHAT NEXT?............................62
I. LIMITATIONS..64

APPENDIX B. IN DE PTH PARAMETER ANALYSIS OF BFSK TRANSCEIVER
DESIGN ..65
A. TRANSMITTER (TOP LEVEL) ...65
B. PREAMBLE SUBSYSTEM..67
C. DATA INPUT SUBSYSTEM ...69
D. MODULATION SUBSYSTEM..71
E. RECEIVER (TOP LEVEL) ..74
F. MATCHED FILTER SUBSYSTEM ...76
G. CORRELATOR’S SUBSYSTEM ..78
H. DECISION CIRCUIT ...79
I. DECODING SUBSYSTEM ..86

APPENDIX C. MATLAB VERIFICATION CODE..91

LIST OF REFERENCES..97

INITIAL DISTRIBUTION LIST ...105

 ix

LIST OF FIGURES

Figure 1 Block diagram of a NCBFSK receiver (From: [5]). ..6

Figure 2 Convolutional Encoder Block Diagram of code rate 1
2

r = and 7κ =10

Figure 3 Example of the environment and the blocks offered by Sysgen......................14
Figure 4 Project Navigator Main Window. ..16
Figure 5 Transmitter’s schematic diagram designed in Simulink/Sysgen

environment. ..19
Figure 6 Preamble Subsystem. ...20
Figure 7 Data Input Subsystem. ...21
Figure 8 Modulation Subsystem...22
Figure 9 Receiver’s schematic diagram designed in Simulink environment.24
Figure 10 Non-Coherent Matched filter subsystem (one of two).25
Figure 11 Correlator’s Subsystem (one of two). ..28
Figure 12 Decision Circuit. ..28
Figure 13 Decoding Subsystem..30
Figure 14 Plots of the encoded bits, the ‘read_enable’ and the channel bits (top to

bottom)...34
Figure 15 Results captured from the ‘Scope 3’ (Figure 36) in Simulink and results as

plotted by the equivalent Matlab Code (from top to bottom).35
Figure 16 Matlab code to align output of Transmitter and Receiver and calculate

number of errors...36
Figure 17 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO

memory in the beginning of the simulation. ..40
Figure 18 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO

memory at the end of the simulation..40
Figure 19 Example of a preamble acquisition with initial values for ‘DDS clock

rate.’ Top plot shows the decision signal and bottom plot shows the
successive peak identification made by the timing circuit...............................41

Figure 20 Example of a preamble acquisition with final values for ‘DDS clock rate.’
Top plot shows the decision signal and bottom plot shows the successive
peak identification made by the timing circuit. ...42

Figure 21 FIR custom block...44
Figure 22 Simplified Version of FPGA Internal Architecture (From: [32]).50
Figure 23 Typical FPGA architecture (From: [33]). ..50
Figure 24 Internal Structure of a DSP48E cell. (From: [58])...58
Figure 25 Different Functions Assigned to GPPs, FPGAs, and DSPs (From: [65])........61
Figure 26 Illustration of the concept behind eASIC’s structured ASICs (From: [72]). ...63
Figure 27 PicoArray Concept (From: [75])..64
Figure 28 Transmitter’s schematic diagram designed in Simulink/Sysgen

environment. ..65
Figure 29 Preamble Subsystem. ...67
Figure 30 Data Input Subsystem. ...69

 x

Figure 31 A block diagram of a convolutional encoder. (From: [13])............................69
Figure 32 Modulation Subsystem...71
Figure 33 Receiver’s schematic diagram designed in Simulink/Sysgen environment. ...74
Figure 34 NC Matched filter subsystem (one of two)..76
Figure 35 Correlator’s Subsystem (one of two). ..78
Figure 36 Initialization block. ..78
Figure 37 Decision Circuit. ..79
Figure 38 Decoding Subsystem..86

 xi

LIST OF TABLES

Table 1. Results of multiple runs with different input sequence and constant input
delay (value set to zero). ..37

Table 2. Results of multiple runs with constant input sequence and variable input
delay. All runs made after first execution of command a =rand
(1,1900)<.5...38

Table 3. Device utilization summary. ..46

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Software Defined Radio (SDR) is a new and fascinating idea having its roots in

the early’90’s. Technologic constraints prevented this idea from becoming a reality at the

beginning, but the development of powerful Field Programmable Gate Arrays (FPGAs)

has increased interest in the SDR concept. FPGAs combine versatility, reconfigurability

and upgradability that is hard to find in any other device.

A simple way to make Software Defined Radio a reality is to store transceiver

designs for many modulation schemes in memory and download the selected one to an

FPGA as needed. This goal is accomplished when transceivers for all modulation

schemes and services of choice are designed and synthesized for the target FPGA.

Starting this procedure, a Binary Frequency Shift Keying transmitter and receiver design

is the main purpose of this thesis.

BFSK is the modulation that uses two different frequencies for the binary 0 and

binary 1 symbols of the input stream. This modulation is simple but there are still many

challenges for the timing synchronization of the receiver. A non-coherent receiver was

chosen to eliminate the need for phase synchronization. The description of such a

receiver along with the timing issue is addressed in Chapter II. Given that Forward Error

Correction is used in the transceiver design, an introduction of convolutional encoding is

also given in Chapter II.

To make a good design, the proper software must support the effort. System

Generator is a program available by Xilinx to help the designing of a project, offering an

environment familiar to most engineers, namely Mathworks’ Simulink with a complete

library of synthesizable blocks. This program is supported by the Integrated Software

Environment (ISE) Design Suite, which is the Xilinx software that accepts the code

generated by System Generator and continues the task of implementing the design to the

FPGA and testing the resulting downloaded design. A more complete description is

included in Chapter III.

 xiv

The transmitter and receiver design made under System Generator is presented in

Chapter IV. A preamble is attached before each packet to facilitate the synchronization

of the receiver. Before that happens, the message bits are encoded using convolutional

encoding. Then output bits of these procedures are transmitted based on the general rule

of the BFSK modulation scheme where binary zeros and ones correspond to two different

frequencies. The receiver uses non-coherent matched filters to extract the transmitted bits

from the received waveform. Also, there exists a timing circuit that provides the bit and

packet synchronization. Finally, the preamble is stripped off and the remaining bits are

inserted to a Viterbi decoder that yields the message bits.

The verification of the design follows in Chapter V. This is carried out in the

System Generator environment, by examining the signal at different points in the design,

and in using Matlab code that simulates part of the receiver. The results are shown and

the design can be considered successful. The problems that were encountered during the

design are also addressed in the second half of this chapter.

A closer look at current FPGA technology is included in Appendix A. Different

technological options in implementing communication modulating techniques and

Software Defined Radio are discussed. These options include Digital Signal Processors

(DSP), Field Programmable Gate Arrays, General Purpose Processors (GPP) and

Application Specific Integrated Circuits (ASICS) and a comparison between these

choices is made. The results of the comparison are that a heterogeneous design that

includes all three of a DSP, a GPP and an FPGA can provide the maximum performance

and versatility. DSPs are better performing in sequential logic, whereas FPGAs are more

efficient in executing parallel tasks. GPP are used in supporting the different network

protocols and other similar tasks.

A lower level description compared to the design flow of Chapter IV of each

block is included in Appendix B. The reason for many choices made in the parameters

window of every block is mentioned next to the actual value of the parameter. In this

way, the rebuilding of the design can be made solely based on this appendix. In the same

 xv

time, further insight into the dependence of the desired results upon the chosen

parameters is provided. In Appendix C, the Matlab code that helped the verification of

the receiver design is included.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank my advisor, Assistant Professor Frank Kragh, my Co-

Advisor, Instructor Peter Ateshian and my Second Reader, Professor Roberto Cristi for

their help to make my design work. They offered me their knowledge and their valuable

time to help me overcome many of the difficulties I encountered. I would also like to

thank Professor Alexander Julian for his advice on using System Generator, a program

that he has mastered.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND ON SOFTWARE-DEFINED RADIO

A software radio is a radio which uses programmable hardware. Software is used

to configure the hardware to meet different communication scheme specifications as well

as to support several different services. According to J. Mitola (1993) “a software radio

(SR) is a set of Digital Signal Processing (DSP) primitives, a metalevel system for

combining the primitives into communications systems functions (transmitter, channel

model, receiver . . .) and a set of target processors on which the software radio is hosted

for real-time communications [1].” This concept is in contrast to common radio devices

implemented in specific hardware, which provide a limited capability of switching

between modulation schemes and services, mainly due to the static hardware used. An

ideal SR receiver directly samples the antenna output. A software-defined radio (SDR) is

a practical version of an SR. The received signals are sampled after a suitable band

selection filter and frequency down conversion [2].

The flexibility and reconfigurability demonstrated by the SDR have become a

reality largely due to the evolution of digital electronics processes defined in software

instead of using static and application specific integrated circuits such as mixers, filters,

amplifiers, modulators, demodulators, and detectors.

The concept of SDR has progressed further because of the advancement of Field

Programmable Gate Arrays (FPGAs) and is currently a field of intensive research, even

though the FPGAs are not the only platform upon which SDR can be based. General

Purpose Processors (GPPs) and dedicated Digital Signal Processing (DSP) chips provide

an alternative to FPGAs, having their own pros and cons. Nevertheless, the versatility

that FPGAs demonstrate makes them unique in many aspects.

B. GOALS OF RESEARCH AND CONCEPTS

Recent technological advancements have allowed FPGAs to transform from an

auxiliary device to a signal processing engine. Nowadays, not only can FPGAs compete

 2

with dedicated circuits, but also they give life to sectors of science that need their

versatility. They have enhanced the Software Defined Radio concept, which is a great

advancement versus the normal Radio concept.

The main goal of this research is the design of a Binary Frequency Shift Keying

(BFSK) transmitter and receiver. The BFSK modulation is used for the illustration of the

techniques in designing a communication system in FPGAs. The reason is that BFSK is a

simple, but robust modulation that can be received non-coherently. The design process

also helps acquiring a greater experience in the design of FPGAs using some of the easier

to use but powerful schematic, synthesis and place and route tools available today.

The second goal of the research is to track the advancements made in the field of

FPGAs and inform on the usefulness and possible implementations of FPGAs.

C. METHODOLOGY AND SCOPE OF THE RESEARCH

Xilinx’s System Generation 10.1 SP2 is the schematic tool used to design a BFSK

transceiver. After verifying that the design worked correctly, the code of the design was

automatically generated by System Generator and the code was loaded into the Integrated

Software Environment (ISE™) to be synthesized, placed and routed, and finally

downloaded to the target FPGA, which is a Xilinx’s Virtex-4. Nevertheless, the

verification of the implementation on the chip was not done due to time constraints.

The main challenge to the design is to achieve the synchronization required in

order for the receiver to be able to distinguish the beginning and end of different packets

of incoming data. The length of the packet was chosen to be fixed at 128 bits and the first

8 bits compose the preamble that facilitates the bit synchronization and packet detection.

D. BENEFITS OF THE RESEARCH

The concept of Software Defined Radio is fascinating but complex. Designing

different modulation schemes that can be downloaded to an FPGA is an easy way to

design a simple Software Defined Radio. On the other hand, all digital modulations share

 3

the same basic principles; thus, synchronization techniques from one modulation can be

borrowed and modified to work with another modulation scheme. A fully working digital

BFSK transceiver is simulated in this thesis.

The research made regarding FPGAs unveiled the fact that while technology is

changing, some arguments, like power consumption, that were once against the use of

FPGAs, may be today their strong point. The system designer must always be up-to-date

and adaptive regarding new technologies since FPGAs are going to be used more

extensively in the future [3].

E. ORGANIZATION OF THE THESIS

Chapter II includes background regarding Binary Frequency Shift Keying. A

Non-Coherent BFSK receiver is presented in order to facilitate the understanding of the

design that was implemented in an FPGA. Also, the concept of convolutional encoding is

introduced.

Chapter III contains the description of the design environment used, namely

Xilinx’s System Generator, ISE and ChipScope Pro along with the characteristics of the

board used for the design. The high level of maturity and the friendly interface of the

software product played a key role in the successful completion of the whole project.

Chapter IV gives a detailed description of the software design of a BFSK

transmitter and receiver. The description includes the logic for the design choices that

were made, the reason behind the choice of specific components, and the explanation of

the function of many blocks.

Chapter V discusses the results taken by simulation in the design environment.

Input and output are compared using Matlab and the correctness of the results is

discussed.

Chapter VI includes an outline of the work made, the significant results taken, the

limitations of the design, and recommendations for future work.

 4

In Appendix A, an extensive background regarding FPGAs is given, explaining

that they are well suited for Software Defined Radios. FPGA’s positive and negative

aspects are mentioned and are compared with General Purpose Processors, Digital Signal

Processors and Application Specific Integrated Circuits.

In Appendix B, a detailed description of the design is given in a per figure and per

block basis. Reading Appendix B in parallel with Chapter IV provides a better

understanding of the blocks and the reason they were used.

In Appendix C, the Matlab code used to verify the results taken by System

Generator is shown.

In this chapter, the concept of Software Defined Radio was introduced. The idea

of SDR is realized by building a BFSK transceiver using an FPGA. In order to provide a

solid background to facilitate understanding the design, the next chapter discusses BFSK

modulation and demodulation and convolutional encoding.

 5

II. BINARY FREQUENCY SHIFT KEYING MODULATION
SCHEME AND CONVOLUTIONAL ENCODING

BFSK is a basic digital modulation scheme. Its concept is not presented in depth,

but can be found in any introductory textbook concerning communications. The textbook

used as a reference for this brief introduction is [4, p. 198] along with [5], which both

include a detailed description of the BFSK modulation scheme and a BFSK receiver. An

introduction to convolutional encoding is also given at the end of this chapter.

A. BFSK MODULATION

In BFSK, two distinct frequencies are chosen to represent the two possible values

of a bit. The equation that describes the transmission signal s of the thi bit that is

produced by this modulation technique is the following [5]:

 ()() 2 cos 2 , for (1)
2c c i b b
fs t A f b t t iT t i Tπ θ⎡ ⎤Δ⎛ ⎞= + ⋅ + ≥ ≥ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (2.1)

where Tb is the bit duration, Ac is the carrier’s amplitude, fc is the mean signaling

frequency in Hz, b(t) is the value of the transmitted bit in bipolar form where 1

corresponds to bit 1 and -1 corresponds to bit 0, fΔ is the frequency separation of the

two frequencies, and θi is the thi bit phase.

A BFSK receiver is distinguished by coherent or non-coherent depending if the

knowledge of the phase information of the received signal is prerequisite for the receiver

to work properly. In this thesis, the receiver of choice is non-coherent which decreases

the complexity of the receiver circuit, eliminating the need for an extra circuit that would

acquire the phase information. The configuration that allows the realization of a Non-

Coherent (NC) reception is the energy detector. A diagram of a NC BFSK receiver is

shown in Figure 1 [5].

 6

Figure 1 Block diagram of a NCBFSK receiver (From: [5]).

The received signal is distributed in two distinct paths, one for each frequency.

To each path, the signal is further divided among two branches; one branch is configured

to detect the in-phase (I) signal and the other branch the quadrature (Q) signal of the

respective frequency. Each branch consists of a mixer, an integrator and the squaring

function. Both branches and the summer at their end consist of a non-coherent matched

filter. The term non-coherent matched filter means that this filter does not try to match

the carrier phase, but only the envelope of the signal [5, pp. 256-258].

The structure is self similar, thus, the analysis made for the case of bit ‘1’

transmitted is exactly inverse to the case of bit ‘0’ transmitted. For a bit ‘1’ transmitted,

the input to the integrator of the top path is given by [5]:

()

1 () = 2 () cos
2

2 2 cos cos
2 2

2 cos cos 2
2

.

i c

c c i c

c i c i

r t s t t

A t t

A t

ωω

ω ωω θ ω

ωθ ω θ

⎡ ⎤Δ⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤Δ⎛ ⎞= + + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

 (2.2)

Similarly, the input to the other integrator in the top non-coherent matched filter is

 7

()

1 () = 2 ()sin
2

2 2 cos sin
2 2

2 sin sin 2 .
2

q c

c c i c

c i c i

r t s t t

A t t

A t

ωω

ω ωω θ ω

ωθ ω θ

⎡ ⎤Δ⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤Δ⎛ ⎞= − + + +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭

 (2.3)

The integrator outputs for the two branches of the top path are:

()

()
(){ }1

cos sin 4 / 2
() = 2 cos

4 / 2 sin cos 4 / 2 1i

i c b
b

b c i
c i c b

f f TRX T A
f f f f T

θ π
θ

π θ π

⎧ ⎫⎡ ⎤⎡ ⎤⋅ + Δ +⎣ ⎦⎪ ⎪⎢ ⎥+⎨ ⎬+ Δ ⎢ ⎥⎡ ⎤+ Δ −⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

i (2.4)

for the I channel, and

()

()
(){ }1

sin sin 4 / 2
() = 2 sin

4 / 2 cos cos 4 / 2 1q

i c b
b

b c i
c i c b

f f TRX T A
f f f f T

θ π
θ

π θ π

⎧ ⎫⎡ ⎤⎡ ⎤⋅ + Δ +⎣ ⎦⎪ ⎪⎢ ⎥− +⎨ ⎬+ Δ ⎢ ⎥⎡ ⎤+ Δ −⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

i (2.5)

for the Q channel.

If the right conditions are met, the above expressions are simplified. Thus, when

cf is chosen to be an integer multiple of half the bit rate bR and fΔ is chosen to be an

integer multiple of the bit rate bR , where 1
b

b

R
T

= , only the first terms of the above

expressions are non-zero. These conditions are known as orthogonal signaling [3, pp.

200-204]. Following that restriction, the outputs of the integrators of the top NCMF are:

 1 () = 2 cos
i b c iX T A θ⋅ (2.6)

and

 1 () = 2 sin
q b c iX T A θ− ⋅ . (2.7)

The outputs of the squaring block are

 2 2
1 () = 2 cos

i b c iV T A θ⋅ (2.8)

and

 2 2
1 () = 2 sin

q b c iV T A θ⋅ . (2.9)

Summing the outputs of the two branches yields

 8

 2 2 2 2
1() = 2 (sin cos) 2b c i i cV T A Aθ θ+ = (2.10)

as the output of the top path. The output of the I-channel mixer in the bottom NCMF in

Figure 1 is

() ()

2 () = 2 () cos
2

2 2 cos cos
2 2

2 cos cos 2 .

i c

c c i c

c i c i

r t s t t

A t t

A t t

ωω

ω ωω θ ω

ω θ ω θ

⎡ ⎤Δ⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤= Δ ⋅ + + +⎣ ⎦

 (2.11)

The output of the Q-channel mixer in the bottom NCMF in Figure 1 is

() ()

2 () = 2 ()sin
2

2 2 cos sin
2 2

2 sin sin 2 .

q c

c c i c

c i c i

r t s t t

A t t

A t t

ωω

ω ωω θ ω

ω θ ω θ

⎡ ⎤Δ⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ Δ⎛ ⎞ ⎛ ⎞= + + ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤= − Δ ⋅ + + +⎣ ⎦

 (2.12)

The outputs of the integrators of the bottom NCMF are

() ()

() (){ }
2

cos sinsin 2 cos 2 1
2() =

12 cos sin 4 sin cos 4 1
2

i

i i
b

c b
b

i c b i c b
c

f T f T
f fA RX T

f T f T
f

θ θπ π

π θ π θ π

⎧ ⎫⎡ ⎤Δ ⋅ + Δ ⋅ − +⎣ ⎦⎪ ⎪Δ Δ⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤⋅ + −⎣ ⎦⎪ ⎪⎩ ⎭

 (2.13)

for the I-channel, and

() ()

() (){ }
2

sin cossin 2 cos 2 1
2() =

12 sin sin 4 cos cos 4 1
2

q

i i
b

c b
b

i c b i c b
c

f T f T
f fA RX T

f T f T
f

θ θπ π

π θ π θ π

⎧ ⎫⎡ ⎤− Δ ⋅ + Δ ⋅ − +⎣ ⎦⎪ ⎪Δ Δ⎪ ⎪
⎨ ⎬
⎪ ⎪⎡ ⎤⋅ − −⎣ ⎦⎪ ⎪⎩ ⎭

 (2.14)

for the Q-channel.

If orthogonal signaling is chosen, i.e., = bf mRΔ and
2

b
c

Rf n= where n and m

are integers, the outputs of the integrators in the bottom NCMF simplify to 2 () = 0
i bX T

and 2 () = 0
q bX T . This in turn yields

 9

 2 () = 0bV T (2.15)

and using equation (2.10) and (2.15) the output of the subtraction of the paths is

 2
1 2 2 cV V A− = . (2.16)

For the case that bit ‘0’ is transmitted, the whole process is inverted and the

respective outputs of the two paths would be 1() = 0bTυ , and

2 2 2 2
2 () = 2 (sin cos) 2b c i i cT A Aυ θ θ+ = . Hence, the output of the subtraction of the two

paths is now 22 cA− . Sampling the final output at the end of the duration of each bit

reveals the value of the transmitted bit.

It is obvious that this implementation relies heavily on proper bit synchronization,

which means that the receiver should know the exact duration of each bit and when each

bit ends. To acquire this information an extra circuit is needed and when the timing

information is incorrect, severe degradation of the performance of the receiver may

result. Many Time Error Detectors (TEDs) for discrete time implementations are

presented in [6], including the Early-Late TED, the Zero Crossing TED, and the Gardner

TED.

In summary, the energy of the two branches of each path are added and compared

to the energy of the other path. The decision made about the received bit is in favor of the

bit that corresponds to the frequency of the path with the highest energy. In order to

minimize the cross product of energies, the frequencies used must be orthogonal which

implies a tone spacing that is a multiple of the bit rate and a center frequency that is a

multiple of half the bit rate [5].

B. CONVOLUTIONAL ENCODING

Encoding in digital communications is used for forward error correction. The

convolutional codes are one of the two most commonly used along with block codes.

They were introduced in 1955 by Elias [7].

Convolutional codes are characterized by the code rate kr
n

= , where k is the

length of the input word and n is the length of the output word, and by the memory order

 10

m . The memory order m is the number of memory elements that are included in the

encoder and is a crucial parameter of the performance of a code. Each code can be

uniquely described by a matrix with octal numbers as elements. The number of columns

in this matrix corresponds to the n parameter and the number of rows to the k

parameter. The actual value of the octal number reveals the interconnections that yield

the respective output, counting in binary from right to left. In the example taken from [8],

in Figure 2, we can identify an 1
2

r = code with a convolutional code array of [133,171].

The number 133 is the octal equivalent of binary 1011011 and corresponds to output 1C

and 171 is the octal equivalent of binary 1111001 and corresponds to output 0C . This

specific code is an industry standard code for 6m = . The constraint length κ for the case

of 1k = is = 1mκ + . In this thesis, the industry standard convolutional code for 1
2

r =

and = 3κ , namely [7 5], is used.

Figure 2 Convolutional Encoder Block Diagram of code rate 1
2

r = and 7κ = .

Convolutional encoded streams are usually decoded by Viterbi decoders, invented

by Viterbi [9]. Viterbi decoders implement maximum likelihood decoding with a slight

performance penalty due to finite decoder memory [10].

 11

This chapter has explained the fundamental principles required to understand the

NCBFSK transmitter and receiver design detailed in the remainder of this document. The

next chapter describes the software and hardware design tools used in this design effort.

 12

THIS PAGE INTENTIONALLY LEFT BLANK

 13

III. DESIGN ENVIRONMENT

Xilinx offers a full suite of programs that provides an integrated development

environment for its FPGAs. This suite is named Integrated Software Environment (ISE)

Design Suite and the main programs that are included are System Generator for DSP, ISE

Project Navigator, ChipScope Pro Tool, PlanAhead and AccelDSP Synthesis Tool [11].

Not all of these tools were used because each program has a very specific functionality,

some of which were not needed. System Generator was used as the main design entry and

simulation program and ISE Project Navigator as the program that implements the design

into the targeted Xilinx device.

A. SYST EM GENERATOR

System Generator is a FPGA design program that offers the necessary libraries of

blocksets, making use of the Mathworks’ Simulink design environment. Simulink is a

schematic tool that is part of Matlab and is known for its efficiency and ease of use

among engineers. For this reason, System Generator (Sysgen) chose this environment to

offer the system modeling, making available the mixing of components from Simulink

and Sysgen for simulation purposes (Figure 3). Sysgen also provides automatic code

generation that can be then downloaded to Xilinx’s FPGAs. The Hardware Description

Language (HDL) that is used during code generation can be chosen from the Sysgen

token and is either VHDL or Verilog [12].

The blocks offered by Sysgen are guaranteed to be synthesizable, solving a great

problem for the designer. Blocks are schematic components that implement primitive

functions and offer the option of default along with customizable inputs and outputs that

can be interconnected. More complex blocks exist as well, yielding the opportunity to

construct a complex design without much effort. A full list and description of all the

available blocks is included in [13] and a more technical description of the Intellectual

Properties blocks is included in [14]. Most of these blocks are DSP related and only a few

are dedicated to communications. In the later case, an extra license is usually needed in

order for them to integrate into the design. Their color is green by default and is clearly

 14

shown in Figure 3. The block ‘System Generator’ is mandatory to every design and the

blocks ‘Gateway In’ and ‘Gateway Out’ define the limits of the design that are going to

be translated in an FPGA circuit. The current version of Sysgen is 10.1 with Service Pack

2.

Figure 3 illustrates a very simple example, where a Finite Impulse Response

(FIR) Filter is designed. The input is supplied by Matlab and the output is viewed by

double clicking on the ‘Scope.’ The parameters of the single Xilinx block used are

defined in the respective window that appears when the FIR block is selected. Neither of

the Simulink blocks, ‘From Workspace’ and ‘Scope,’ are synthesizable. They are only

used during the design phase for simulation purposes.

Other parameters that are common to many Sysgen blocks are the format and

width of the output values [13, p. 44]. There are blocks dedicated to manipulate the data

type and alter their internal structure. For example, the Enable and Reset signal are only

allowed to be Boolean, thus an unsigned one bit integer must be reinterpreted as a

Boolean number. This is accomplished by the blocks ‘Reinterpret’ or ‘Convert.’

Figure 3 Example of the environment and the blocks offered by Sysgen.

 15

Another block of special use is ‘MCode’ [13, p. 239]. It allows writing a program

in Matlab and saving it in the block. Then, Sysgen is responsible for synthesizing this

program. There are many constraints regarding the commands that can be used in such a

program. As an example, the division by a number different from a power of two is not

supported. Nevertheless, this block is very useful to describe state machines, and as such,

it has been used many times in the BFSK design.

B. ISE PROJECT MANAGER

After finishing with the design and generating the code for the HDL language of

choice via Sysgen, the source file is loaded into the ISE Project Manager as a project.

This Manager is responsible for the synthesis, implementation, and verification of the

design and the target device configuration [15].

After loading a project created by Sysgen, source files can be added, created or

modified. Other available processes under the Processes Window, as shown in the left

column in Figure 4, are as follows:

• Add timing constraints or define Input Output (IO) pins under User
Constraints choice.

• Synthesize the project or generate post-synthesis simulation under
Synthesize –XST. At this step HDL programs are converted to netlist files
that are used by the implementation step.

• Translate the logical design (netlist file) to a physical file format, to make
the mapping of the design to the FPGA, and to place and route the
mapping to the FPGA of choice under Implement Design choice. The
placement step includes the decision made by the program regarding
where to place the logic elements given the internal structure of the target
device. Then, routing is responsible for finding the optimized connecting
paths between these placed components.

• Generate the programming file that will be installed into the FPGA under
Generate Programming File,

• Configure Target Device, and

• Use the ChipScope Pro program to verify the actual implementation into
the FPGA under Analyze Design Using Chipscope. Every step of the
implementation process described above has its own tools for testing and
simulating the design. ChipScope is responsible to check the functionality
of the final design installed into the FPGA.

 16

Figure 4 Project Navigator Main Window.

C. AVNET BOARD

The mainboard to be used for the project is designed by AVNET and is called the

Xilinx® Virtex™-4 LX LC Development Kit interconnected with the Analog to Digital

(A/D) and Digital to Analog (D/A) Converter P160 provided by Avnet as well.

The mainboard’s key features are the Virtex XC4VLX25 FPGA, 10/100 Ethernet

interface and 64 MB Double Date Rate (DDR) Synchronous Dynamic Random Access

Memory (SDRAM). The Virtex XC4VLX25 is a low entry FPGA of the Virtex-4 family

and contains 24,192 logic cells and 48 dedicated DSP cells called XtremeDSP (18-bits x

18-bits, two’s complement, signed Multiplier). It is manufactured using the 90nm Copper

CMOS Process and it has no possibility of using the embedded soft processor PowerPC

405 core, due to size constraints [16]. The Analog Module P160 features two 12-bit 53

 17

Msps A/D converters and two 12-bit 165 Msps D/A converters yielding much flexibility

for the design [17]. Nevertheless, this module has not been used in any test in this

research, mainly due to time constraints. The description of its pins and interfaces is in

[18].

The literature recommended for the Sysgen and ISE is limited to the Xilinx

Manuals. These manuals are included in a help guide offered by Xilinx as an internet-

accessible Acrobat file [19]. For System generator there is also a manual that includes

introductory labs and block and program reference manuals in its support page under the

documentation tab and the Design Tool choice [20]. Extensive documentation of the most

complex blocks is given in the same page under the IP Cores choice [21]. For the ISE

project manager the documentation can be reached through the help guide stated above

after choosing ‘ISE Help’ [15].

Sysgen and ISE Project Manager were extensively used for the design and the

generation of the programming file of the non-coherent Binary Frequency Shift Keying

Transmitter-Receiver presented in the next chapter. The plethora of tools offered by these

programs made the design straight-forward, compared to writing directly to an HDL

language. Xilinx is also supporting its programs online, making the troubleshooting

easier.

 18

THIS PAGE INTENTIONALLY LEFT BLANK

 19

IV. DESIGN FLOW

In this chapter, the logic flow of the design is discussed in detail. The basic

principles of the BFSK transmitter and receiver illustrated in Chapter II are implemented

in Simulink using Xilinx’s blocks. The transmitter and receiver are separated into two

different designs. The design is further exemplified in a per figure and per block basis in

the Appendix B, where key parameters and Matlab code, where applicable, are also

given.

A. TRANSMITTER

The transmitter, illustrated in Figure 5, is the combination of three distinct parts:

the preamble, the data input and the modulation circuitry. The data is transmitted in

blocks of 120 bits. An eight bit preamble with pattern 10101001 is attached in front of

every packet to facilitate packet synchronization at the receiver. For simulation purposes,

Simulink’s blocks ‘From Workspace’ and ‘To Workspace’ were used to supply the

design with input bits and store them, respectively. The results were also visually verified

at each stage using ‘Scope’ blocks.

preamble with sequence
10101001 . Every 128 channel *

bits repeat the sequence

first select the
preamble , then the

input sequence . Repeat
every 128 bits .

*Note : from the 128 bits , 8 are the preamble and 60 (doubled by the convolver) are the actual info bits .
Channel bits are defined the preamble plus the the output bits of the convolutional encoder .

Exception is the last packet includes only 58 info bits in order to accommodate 4 trail bits
To Workspace simout

Resource
Estimator Reset

 In

Preamble Subsystem

reset

preable_invalid

preamble_seq

read_out

Mux 1

sel

d0

d1

 z-1

Modulation Subsystem

channel bits

reset

modulated signal

Gateway Out
 Out

Gateway In
 In

From
Workspace

[(0:1901)*T ;1 a 0]'

Data Input Subsystem

read_enable

data_in

reset

data_seq

System
Generator

Figure 5 Transmitter’s schematic diagram designed in Simulink/Sysgen environment.

 20

1. Preamble Subsystem

The Preamble Subsystem (Figure 6) is responsible for the attachment of the

preamble at the start of each packet. This subsystem is also responsible for the blocking

of data bits whenever the preamble is transmitted and controlling the multiplexer ‘Mux 1’

in Figure 5, which selects the data or the preamble.

The counter drives two blocks. It counts up to 127 and restarts from 0. While the

counters output is seven or less, the preamble is valid and is read out to the modulation

subsystem via the multiplexer ‘Mux1’ in Figure 5. The ‘read_out’ and ‘preamble_invalid’

are low and the output of the counter is directly translated to an address in the ‘ROM’

block. The content of this address appears at ‘ROM’ output and again through the

‘Mux1’ in Figure 5 to the Modulation Subsystem. ‘Mux1’ is switched in the correct

position by ‘preamble_invalid’ signal. ‘Read_out’ is responsible to block the message

bits and let them be stored in a memory while the preamble is transmitted. The signals

‘preamble_invalid’ and ‘read_out’ take the same values and have different names merely

for illustration purposes.

storage of the
preamble
 sequence

Counts up to 7 before
 release the transmittion of info bits

Note :From each info bit ,
I get 2 channel bits (due

to convolutional code 1/2).
That is why the preamble 's

clock is set at twice the speed .

read _out
3

preamble _seq
2

preable _invalid
1

Relational 1

a
b

a>b
z-1

ROM

addr z-1

Counter 1

rst out

Convert 1

cast

Constant

7

reset
1

Figure 6 Preamble Subsystem.

 21

2. Data Input Subsystem

The Data Input Subsystem (Figure 7) is responsible for the convolutional

encoding of the input sequence with a rate 1
2

r = code and the subsequent storage of the

encoded bit in a First In First Out (FIFO) memory. The two streams created by the

‘Convolutional Encoder’ block merge back into one stream by the ‘Concat’ and ‘Parallel

to Serial’ blocks. It should be noted that these two last blocks can be replaced by a ‘Time

Division Multiplexer’ block. The bit period of the final stream is half the period of the

message bits due to the encoding with rate 1
2

r = . In the ‘Convolutional Encoder’

parameters window, the constraint length was set to 3, meaning that the encoder is using

a register of two flip-flops. The encoding vector of choice was [7 5], as explained in

Section B in Chapter II.

Or Time Division Multiplexer

data _seq
1

T3
T2

T1

T

Parallel to Serial

p s

FIFO

din

we

re

rst

dout

empty

%full

full

Convolutional Encoder v 6_0

din

vin

rst

dout 0

dout 1

vout
Constant 2

1 Constant 1

1
Concat

hi

lo

reset

3

data _in

2

read _enable1

Figure 7 Data Input Subsystem.

After being stored in the ‘FIFO’ memory, the data waits for the enable signal of

the Preamble Subsystem in order to exit. At the same time, the multiplexer ‘Mux1’ in

Figure 5 is switched to the correct position to allow the promulgation of the input data to

the last subsystem. Each bit produces an FSK symbol of duration 64 samples in the

Modulation Subsystem. This parameter can generally be adjusted from the panel of the

blocks under the title ‘Explicit sample period.’

 22

3. Modulation Subsystem

The modulation subsystem, illustrated in Figure 8, uses each bit that appears at its

entrance to choose between the two frequencies. This is accomplished by a multiplexer

‘Mux,’ where the selection pin (sel) is driven by the forwarded bits and the multiplexer

data inputs are driven by two Direct Digital Synthesizers (DDSs). Each DDS generates a

sine wave at one of the two frequencies for the BFSK signal. The DDS is a digital

sinusoid generator and can produce frequencies up to half the frequency at which the

DDS core will be clocked, i.e., the DDS clock rate, in order not to exceed the Nyquist

frequency [22]. For the Xilinx Virtex-4, which can achieve clock speeds of 500 Mhz

[23], the limit for the output frequency of the DDS is 250 Mhz when the DDS clock rate

is set to the maximum possible frequency. Nevertheless, much lower frequencies were

used and the frequencies for 1 and 0 are 45 MHz and 40 MHz, respectively. Given that

the encoded bit rate of choice is 1.5625R Mbps= , the two frequencies are not orthogonal

based on the definition given in Section A in Chapter II. Even though this design choice

may degrade the performance in a noisy environment, it does not have any noticeable

impact in the noiseless analysis that follows. The ‘Shift’ block plays the role of

amplification, multiplying the signal before transmission by a factor of four. Pulse

shaping is not used in this design.

if 0 select the frequency
of input d 0, else choose

frequency of input d 1

Only to avoid some
undefined inputs during the

 initialization time .

State_machine : Waits for the first 1 of the preamble in order to enable the mux .

modulated signal
1

Shift

X << 2
z-0

Mux

sel

d0

d1

en

 z-1

MCode 1

din
reset enablestate _machine

DDS Compiler for 1s

cos

DDS Compiler for 0s

cos

reset
2

channel bits
1

Figure 8 Modulation Subsystem.

 23

The ‘Mcode 1’ in Figure 8 is used for initiation. During the beginning of the

simulation, many signals inside the blocks start in undefined states and other blocks, like

the multiplexer, cannot propagate these kinds of signals. A block that would enable the

multiplexer after the propagation of the undefined signals was needed, without affecting

the overall performance of the designs. Usually, a constant enable signal is used along

with a delay measured exactly to overcome this problem. A very simple Matlab program

was written that takes advantage of the fact that the first bit of the preamble is 1. Upon

detection of the first 1 to the channel, the ‘MCode 1’ enables the multiplexer without any

further interruption. It should be noticed that the command xfix({xlBoolean},0)

was used in the program in order to avoid the use of a ‘Convert’ block. Otherwise, any

value assigned as 0 or 1 in a Matlab Code is translated to an unsigned integer and cannot

be used as it is to drive the enable port (en) of the ‘Mux.’ The xfix() command explicitly

converts to the type described as the first argument. In this case, the value 0 is assigned as

a Boolean type and not as an integer [13, p. 243].

B. RECEIVER

The non-coherent BFSK receiver is illustrated in Figure 9. The choice of a Non-

Coherent (NC) receiver design was made to eliminate any need for an extra circuit that

would extract the phase information from the received signal. The receiver consists of the

following subsystems: the two Correlators, the Decision Circuit, the Timing Circuit, the

two Non-Coherent Matched Filters and the Decoding Subsystem. The Correlators [24]

and the Timing Circuit form the feedback path and the Non-Coherent Matched Filters

and the Decoding Subsystem form the feed-forward path. The mixers are parts of both

paths and are shown explicitly in the figure. The ‘Relational’ block compares the non-

coherent matched filters’ outputs and decides the value of the received bit. The circuit

designed closely matches the theoretical diagram found in the Introduction of BFSK

scheme in Figure 1 in Chapter II, with the addition of a time synchronization circuit and a

Decode Subsystem.

 24

Non-Coherent BFSK receiver

forward path - matced filter

mixers

correlator to feed the
state machine

variable delay for testing

correlator to feed the
state machine

Relational

a

b

a>b
z-1

NC Matced Filter for 1s

mixer sin input

write enable & rst

mixer cos input

Out

NC Matced Filter for 0s

mixer sin input

write enable &rst

mixer cos input

OutMult 3

a
b (ab)z-3

Mult 2

a
b (ab)z-3

Mult 1

a
b (ab)z-3

Mult

a
b (ab)z-3

Gateway Out

 O
ut

Gateway In
 In

From
Workspace.signals .values))*t; [simout

Delay 2
z-32

Decode Subsystem

preambe end

channel bits

Out1

Decision Circuit

correlation value for 1s

correlation value for 0s

reset ACCU & we FIFOs

preamble end

DDS Compiler v 2
 for 1s

sin
cos

DDS Compiler v 2
 for 0s

sin
cos

1's Correlator

sin input

cos input
correlation value for 1s

0's Correlator

sin input

cos input
correlation value for 0s

System
Generator

Figure 9 Receiver’s schematic diagram designed in Simulink environment.

1. Non-Coherent Matched Filter Subsystem

A non-coherent matched filter is introduced in Section A in Chapter II. The

implementation of this filter in the BFSK receiver includes an integrator that integrates

the input signal over the duration of a bit period bT . Thus, correct timing for the specific

design means the correct identification of the beginning of each bit in order to integrate

over the correct time frame. This fact generates the need for a timing feedback circuit that

will make this information available.

The NC Matched Filter Subsystem in Figure 10 has two filters where each one

consists of two branches. The two branches correspond to the sine and the cosine at the

symbol frequency. Each branch consists of a mixer (illustrated in Figure 9 before NC

Matched Filter Subsystem), an accumulator, and a squaring block. Then, the two

branches’ outputs are added together to give the final output of each filter. The output

 25

values of the two filters are compared in order to decide which frequency was

transmitted. The frequency that was transmitted corresponds to the filter with the highest

output value.

The accumulator included in the NC Matched Filter Subsystem is the followed

discrete time equivalent of an integrator and it adds 64 consecutive values of the input

signal before it is reset by the feedback timing circuit. Every accumulator is followed by

a FIFO memory, which only reads the output of the accumulator just before the

accumulator’s reset signal is raised. In this way, the memory captures only the last value

of the respective sum. The rest of the block is straight forward, with a squaring block and

an adder that adds the signals of the two branches, yielding a single output from the

subsystem. The downsample implemented in all branches between the FIFO memory and

the squaring blocks is used in order to downgrade the unneeded computational load. After

the accumulation of the correct 64 samples of a bit and the subsequent storage of this

value to a FIFO memory element, the memory yields the same output for 64 consecutive

time units. Thus, it is not necessary to do the computations for all values.

buffers
instead of integrators

Out
1

T 5
T 4

T 3
T 2

T1

T

Mult 5

a
b (ab)z-3

Mult 4

a
b (ab)z-3

FIFO 3

din

we

re

dout
empty
%full

full

FIFO 2

din

we

re

dout
empty
%full

full

Down Sample 5

↓64
z-1

Down Sample 2

↓64
z-1

1

AddSub

a

b
a + b

Accumulator 1

b

rst
q

Accumulator

b

rst
q

mixer cos input
3

write enable & rst2
mixer sin input

1

Figure 10 Non-Coherent Matched filter subsystem (one of two).

 26

2. Timing Circuit

Synchronization circuits are categorized as data-aided and non data-aided (or

blind) and the latter require no training data sequence [25]. As was mentioned previously

in the transmitter description in Chapter IV, this design uses a data-aided circuit for the

acquisition of the bit synchronization. The preamble is a known pattern that will help to

identify not only the start time of each bit, but the commencement of each packet as well.

In this design, the feedback synchronization circuit is separated into three

subsystems, the two Correlators and the Decision Circuit. The Correlators (Figure 11)

work similarly to the NC Matched Filter Subsystem with the main difference being that

accumulators have been replaced by Finite Impulse Response (FIR) filters. These filters

constitute sliding window accumulators of the last 64 samples. In order to make a

decision regarding the beginning and end of a bit, a circuit that updates its output at every

received sample is needed. The correct timing is going to be extracted by the maxima and

minima of this output. In contrast, the feed-forward path with the non-coherent matched

filters need only accumulate the proper values and then yield a different output once

every 64 samples and not every sample.

In Figure 11, the FIR is shown to be a custom FIR filter and not an off-the-shelf

block provided by Xilinx. The reason is going to be analyzed in the troubleshooting

section, but for the moment, it can be thought as an FIR filter with impulse response
63

0
0

() ()
n

h n n nδ
=

= −∑ , where {1 0
0 0() if n

if nnδ =
≠= . The initialization block, as in the case of the

block ‘Mcode1’ of the transmitter, is used only to prevent the undefined initial signals

from propagating and to suppress errors during the simulation. It consists of a comparator

that has two delayed versions of 1 in its inputs; thus, propagating an initial reset high

signal once at the beginning of the simulation.

The difference of the outputs of the two correlators is the input to a logic block

(‘Mcode’ block in Figure 12) that searches for maxima and minima of the input

waveform. Given that the correlator yields a maximum when the correct 64 samples of a

bit have been added, the expectation is that the 1’s correlator will output a much higher

 27

value than the 0’s correlator when the whole first bit of the preamble has just been

received. The opposite is expected at the second bit of the preamble, because it has the

frequency corresponding to the 0 bit. Thus, the difference waveform is expected to be a

maximum after receiving a 1 at the exact moment that all 64 samples of that 1 have

entered the filter. Following the same reasoning, the difference waveform is expected to

be a minimum after receiving a 0 at the exact moment that all 64 samples of that 0 have

entered the filter. However, when two consecutive equal bits are received, the result is

different. The output of the filter will reach an extremum at the moment that all the 64

samples of the first bit have entered the filter, and then remain at that extremum for the

following 64 samples, corresponding to the second bit. Therefore, the filter output

displays a plateau effect, which is less useful for symbol synchronization. After the

identification of maxima and minima, a state machine tries to verify when the correct

pattern of the preamble has been received. When this is the case, the timing of the bits is

well known and this information is supplied to the accumulators of the NC Matched

Filter Subsystem. This part is included in the Decision Circuit shown in Figure 12.

The timing is first extracted in absolute time values. That is, a free running

counter, i.e., ‘Counter 3,’ starts counting from the moment the event starts working up to

the moment it stops. When an event occurs, the time that is captured is relative to the

power up time of the circuit. The information needed by the accumulators of the forward

path is at what instance of a 64 cycle time they should stop accumulating the previous bit

and start accumulating the new bit. The timing must be translated to time modulo 64 and

then it is stored for the rest of the duration of the packet. This is done by the Slice and

Register blocks in Figure 12. The extra delay introduced by the timing circuit during the

feedback path must also be considered. This is performed by the ‘AddSub3’ and

‘Constant 7’ blocks in Figure 12. The exact value of ‘Constant 7’ was determined

experimentally.

The last three bits of the preamble are not used by the state machine. The time

that corresponds to the last two 0s is provided to the timing circuit in order to ensure a

 28

timely and accurate synchronization of the main circuit. Additionally, the very last bit of

the preamble, the final 1, is used by the ‘MCode’ in Decoding Subsystem along with the

signal ‘preamble end’ in order to identify the beginning of each packet.

correlation value for 1s

1

Mult 9

a
b (ab)z-3

Mult 8

a
b (ab)z-3

Initializaton
 block

reset out

FIR filter 1

reset in

cos input
Out1

FIR filter

reset in

sin input
Out1

AddSub 4

a

b
a + b

cos input
2

sin input
1

Figure 11 Correlator’s Subsystem (one of two).

feedback circuit :
part of logic that
yields the timing .

the state_machine tries to verify when
all the preamble had been detected

in order to extract timing info .
After a succesful detection , it wait for the rest

bits of the packet and starts again .

used to count #
of samples that

are added inside
the accumulators .

performs the
modulo 64 operation

preamble end 2
reset ACCU
& we FIFOs1

Slice

[a:b]

Relational 1

a ba=b
z-1

Register

d

en
q z-1

MCode 0

d dipre

MCode

din

tin

total _sync

sync

tsync

reset_counter

state _receiver

Counter 3

out

Counter

ou
t

Convert 1

cast
Constant 7

23

AddSub 3
a
ba + bz-1

AddSub 2

a

b
a - bz-1

correlation value for 0s
2

correlation value for 1s
1

Figure 12 Decision Circuit.

 29

Upon reception of the fifth bit of the preamble, the state machine ‘state_receiver’

stays locked for the rest of the packet and then it starts searching for a new preamble after

the time assigned for the current packet elapses. The decision circuit also provides an

output, the ‘preamble end signal’ that helps the Decoding Subsystem to identify and

block the preamble from the output, thus rebuilding the initial data sequence.

3. Decoding Subsystem

The Decoding Subsystem, illustrated in Figure 13, accepts as input the result of

the comparison of the two non-coherent matched filter outputs, which is a sequence of 0s

and 1s, and tries to locate the last preamble bit. The acquisition of the beginning of the

preamble may or may not be correct, because the Decision Circuit had not yet finished

the extraction of timing information. However, after the fifth bit of the preamble, the

receiver is synchronized to the incoming signal. Thus, the Decoding Subsystem uses the

information of the ‘preamble end signal,’ which is set when the acquisition of the fifth bit

of the preamble is accomplished. The following two 0s, i.e., the sixth and seventh bits of

the preamble, are sacrificed to assure the timely propagation of the information through

the whole circuit and the last bit of the preamble is used to signal the commencement of

the information bits. The Mcode block ‘preamble_ detacher’ is a simple state machine

that incorporates the logic of the previous fact to allow the storage of input bits, only after

the identification of the last bit of the preamble. The ‘FIFO 4’ memory is driven by a read

enable signal. This enable signal is delayed by enough time to accommodate the total

duration of the preambles that are taken away. This is accomplished by block ‘Delay 4, in

Figure 13.

 30

circuit that pevents
the preamble to

appear at the output

Out1
1

Viterbi Decoder v 6_0

din 1
din 2
vin

dout

vout

To Workspace1

after decoderTo Workspace

pr
e

de
co

de
r

Time Division
Demultiplexer

d
q0
q1

TDD

T3

T 2
T1

T

MCode

clock
prbl _end
input _bit

wepreamble_detacher

FIFO 4

din

we

re

dout
empty
%full

full

Down Sample

↓64
z-1

Delay 4z-100

Delay 20

z-6

Delay 19z-5

Counter 1

ou
t

Convert

cast

Constant 51

Constant1

channel bits
2

preambe end1

Figure 13 Decoding Subsystem.

Although the length of the packet had been taken into account by the Decision

Circuit, the ‘preamble_detacher’ is counting the bits after the preamble again in order to

achieve better synchronization. An external clock, i.e., the ‘Counter 1’ block in Figure

13, is used as a reference of the pulse clock time of the last preamble bit. After 120 clock

cycles, the write enable (we) goes low, disabling the FIFO and the ‘preamble_detacher’

waits for the next ‘preamble end’ signal. The clock ‘Counter 1’ is an 18 bit register and

is a free running counter. It should be noted that all signals in this subsystem are

changing every bit period and not every sample period. Block ‘Down Sample’ in Figure

13 downsamples the ‘preamble end’ signal. Notice that the ‘channel bits’ signal has

already been downsampled in the previous subsystem.

Concluding the description of Decoding Subsystem, the received bits are the input

for a Time Division Demultiplexer (TDD) which is connected to a Viterbi decoder as

discussed in Section B in Chapter II. The input sequence to the TDD is the encoded bit

stream first produced in the convolutional encoder in the transmitter (Figure 7). The TDD

is responsible for separating this sequence back to two different streams in order to

supply the proper inputs to the ‘Viterbi Decoder.’ The parameters settings for the encoder

and decoder are the same. This decoding produces the received message bits, which will

 31

ordinarily be identical to the sent message bits. Exceptions to this can be caused by

decoding errors, which can occur when the received signal is corrupted by excessive

noise, interference, or fading [26].

The low level description of the circuit that was discussed in this chapter is

validated in the next chapter, along with the results and the weaknesses of the design.

Furthermore, the lessons learned during the design process are also included as a deposit

of knowledge for follow on research in this domain.

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

V. DESIGN VALIDATIONS, RESULTS AND
TROUBLESHOOTING

The design has been verified in the Simulink environment and a critical part of the

design has been verified using Matlab code-based simulation. Many problems

encountered during the design of the receiver and transmitter are also discussed. The

figures of the full transmitter and receiver design are included in Appendix B, thus most

of the figures that are mentioned in this chapter refer to this Appendix.

A. SYST EM GENERATOR

In order to verify the design, the Simulink blocks ‘From Workspace’ and ‘To

Workspace’ and ‘Scope’ were used. ‘From Workspace’ was used to supply the

transmitter with message bits and to pass the transmitter output to the receiver. ‘To

Workspace’ gives the ability to extract the values at a specific point in the design to the

Matlab environment in order to drive simulation code with this data or to transfer it to the

receiver. The ‘Scope’ depicts the data directly on a plot with the simulation time on the

horizontal axis.

The input sequence to the transmitter was a random sequence of length 1900

message bits with the leader bit always 1 and the trail bit always 0. After being encoded,

the bits were transmitted in packets of 128 encoded bits. The correct position of the

preamble should first be determined. Figure 14 illustrates the signals of the block ‘Scope’

of Figure 26 in Appendix B. The first plot is the encoded bits, the second plot is the

‘read_enable’ signal that releases the encoded bits to the Modulation Subsystem, and the

third plot represents the channel bits to be transmitted. Channel bits are defined as the

encoded bit stream with the preambles. As seen in Figure 14, the preamble of the first

packet is always positioned five bits ahead, but the rest of the preambles were correctly

positioned exactly in front of the respective packet.

 34

Figure 14 Plots of the encoded bits, the ‘read_enable’ and the channel bits (top to
bottom).

As shown by the middle plot of Figure 14, the ‘read_enable’ goes high after the

transmission of the preamble, allowing the propagation of the encoded bits (along with

the known delay of the five bits duration). At the end of 128 bits, ‘read_enable’ goes back

to low, capturing the encoded bits in the ‘FIFO’ memory. As stated before, the Preamble

Subsystem does not know when there are no more bits for transmission and an enable

low signal should be manually triggered. Otherwise, it would continue to transmit the

preamble at the proper instances for the rest of the simulation time.

The receiver, on the other hand, is using the preamble for timing purposes and

then removes it. The sequence without the preamble is the input to a Viterbi decoder that

will regenerate the recovered message sequence. It is necessary to verify that the decision

logic is working properly. Matlab code was written to simulate the decision circuit and

duplicate the results for comparison purposes. In order to avoid any phase mismatch, the

values after the mixers as shown in Figure 32 in Appendix B were captured in the Matlab

Workspace by blocks: ‘To Workspace 0-4’ in order to supply the test code. This way, any

noise inserted by DDS blocks will not influence the results. After the confirmation that

both the Matlab code and the simulation under Sysgen were providing the same results,

the Matlab code was modified to include the DDS blocks as well with the following

results.

preamble Encoded message bits preamble

 35

As seen in Figure 15, the first two plots are from ‘Scope 3’ (Figure 36 in

Appendix B) and represent the decision waveform and the decisions made for the

existence of the preamble. The vertical lines represent the detection of the part of the

preamble, used for timing purposes, i.e., 10101. The last two plots in the white

background are the respective results of the Matlab verification code. In practice, both

results coincide with the correct position of the preamble. Recall that only the timing

circuit uses the first preamble bits and the Decoding Subsystem uses the rest.

Figure 15 Results captured from the ‘Scope 3’ (Figure 36) in Simulink and results as
plotted by the equivalent Matlab Code (from top to bottom).

Finally, the initially transmitted and the received bit streams must be compared. In

order to verify the proper operation of the receiver, multiple runs were made using the

same stream but different delay value (‘Delay 2’ in Figure 9) at the entrance of the

receiver. This is done to ensure that the receiver is time invariant and that the specific

choices made for the synchronization of the different subsystems are not case/input delay

sensitive. After that process, different streams were used with random delays. The

number of errors was calculated by a short Matlab code to confirm the visual verification.

 36

The specific pattern used for the generation of the bit stream is a random sequence

of nineteen hundred bits always starting with 1 and ending with 0. Specifically, the value

inserted in the data slot of the parameter window ‘From Workspace’ (Figure 5) was

[0:1901;1 a 0]' where ‘a’ was defined by the command a =rand(1,1900)<.5 in the

Command Window. This command creates an array of 1900 random bits. The choice of

that length was dictated by the constraints of the current configuration of the receiver.

The counters used in different subsystems of the receiver are 18 bits wide. Since there are

64 samples per bit, there are

182 4096 64

clock cycles bitsclock cycles
bit

= (5.1)

theoretically possible. Due to delays, the effective limit is slightly under 4096 bits. Given

that the encoding doubles the number of channel bits and accounting for the delays and

the preamble, roughly nineteen hundred information bits can be received. This problem is

further presented in Section C.2 of this chapter. Every data packet should fit 60

information bits, and there will be four extra bits in the last packet due to the

convolutional encoder. The convolutional encoder does not encode the information bits

of each channel packet separately, but the whole bit stream continuously.

The results are illustrated in Table 1 and Table 2. Recall that the input delay to the

Receiver is ‘Delay2’ shown in Figure 9. The Matlab code shown in Figure 16 was used to

align the output of the Transmitter and the Receiver and calculate the number of errors.

%% post encoding
num_test_bits =3820; % Defines the length of the encoded bits in the
 % test sequence.
delay=403; % the output value is delayed by 'Delay4' in Decode
 % Subsystem.
tra =after_Viterbi_encoder.signals.values(1:num_test_bits);
rec2 =pre_Viterbi_decoder.signals.values(delay:num_test_bits-1+delay);
num_of_errors_pre =sum(abs(tra-rec2)==1)
% position =find(abs(tra-rec2)==1)+delay-1

Figure 16 Matlab code to align output of Transmitter and Receiver and calculate
number of errors.

 37

It must be noted that the number of errors is calculated based on the encoded bit

stream. There are two obvious methods that could be used to check for errors. We could

count message bit errors or channel bit errors. In this work, it was chosen to count

channel bit errors. This has the advantage of counting any error, since the received bits

are examined before the decoder corrects any errors. However, the disadvantage of this

method is that it does not check for errors in the decoder. Since the decoder is provided

by Xilinx, we have confidence in its design and accept this disadvantage as small.

Before the simulation the following parameters should be defined in the Matlab

Command Window: T = 7128 10−⋅ , t = 710− . New random sequences are generated by re-

executing the command a =rand (1,1900)<.5 in the Command Window.

Run Number of errors Comments

1 0 First execution of command a =rand(1,1900)<.5

2 0 Second execution of command a =rand(1,1900)<.5

3 0 Third execution of command a =rand(1,1900)<.5

4 0 Fourth execution of command a =rand(1,1900)<.5

Table 1. Results of multiple runs with different input sequence and constant input
delay (value set to zero).

 38

Run Input Delay Value Number of errors

1 0 0

2 9 0

3 15 0

4 23 0

5 31 0

6 45 0

7 57 0

8 63 0

9 75 0

10 98 0

Table 2. Results of multiple runs with constant input sequence and variable input
delay. All runs made after first execution of command a =rand (1,1900)<.5.

The simulation of both the transmitter and the receiver showed that the design is

working correctly. The acquisition of the preambles was made at the correct times and

the timing was correctly extracted. In the absence of noise no malfunction had been

observed. Minor annoyances are presented in the next section, which explains the various

problems that appeared during the design process.

B. TROUBLESHOOTING AND LESSONS LEARNED

Much knowledge was acquired during the design process. Even though Xilinx is

trying to offer programs that are easy to use, there were many instances in which the

debugging process was time consuming. Many of these points are illustrated as follows

for easy reference and as a guide of things to avoid.

 39

1. Transmitter

The preamble of the first packet does not fit right before the information bits.

There are always five zeros between the end of the preamble and the beginning of the

encoded message bits in this packet. In subsequent packets, the preamble is positioned

correctly. This event should occur every time after a reset. The fact that these inserted

bits are zero does not affect the decoding procedure and the action taken was to position a

1 in front of every bit stream. This 1 acts like a flag that information bits follow and made

the debugging process easier as well. The initial assumption that a proper combination of

the delay values in blocks ‘Delay 1,’ ‘Delay 2’ and ‘Delay 4’ in Figure 29 would correct

the problem was later rejected. The reason may be the delay of the input data to reach the

FIFO memory of Figure 30.

The Preamble Subsystem is not intelligent enough to sense when data is ready to

be transmitted. It is in need of external manual control to enable the counter in the

preamble. While the counter of the preamble is not enabled, the input data is

convolutionally encoded and stored in the memory. In the same sense, the preamble

circuit does not know when there is no more data to be transmitted. To void the

transmission of packets that contain only the preamble, the information bits must be

provided constantly to the receiver. The bits that cannot be transmitted at any given time

are stored to an internal memory. Otherwise, the circuit can be manually controlled

through the external enable and reset port. The output signal ‘empty’ from the FIFO

memory of Figure 30 memory could be a good indication of when the input data is ready

for transmission. This could help the problem with the preamble stated in the previous

paragraph as well. Nevertheless, this signal does not seem to behave as expected. It goes

high too early as shown in Figure 17 and does not go low after the transmission of the last

bit stored in the FIFO memory as illustrated in Figure 18. The reason was not determined

in this research.

 40

.

Figure 17 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO
memory in the beginning of the simulation.

Figure 18 Plot of the ‘empty’ output signal and the ‘din’ input signal of the FIFO
memory at the end of the simulation.

The state machine ‘MCode 1’ in Figure 32 could have been avoided and replaced

by a constant with an output value of Boolean 1 connected to the enable port of ‘Mux’

through a delay. This delay should be measured to overcome the undefined signal errors.

This tactic is used in Figure 33 for delaying the enable of the ‘Relational’ block.

2. Receiver

At the beginning, a point of concern was that the signal used to extract the timing,

i.e., the output of the Correlators and specifically the signal at din of block ‘MCode’ in

Figure 37, does not always provide clear and distinguishable peaks. The decision of

where exactly the peaks occurred can become very vague and this would yield many

errors. As an example, in Figure 19 a successful acquisition of the preamble is illustrated.

The first, third and fourth detection of the preamble bits seem to be correctly positioned,

which is not the case for the second and fifth. There is a flat area near the theoretical

peaks, which in turn, inserts an error to the timing. From inspection of many preambles,

the third and fourth bits of the preamble yielded the least error and these were initially

used for decision, even though all bits were used for the state machine.

 41

Figure 19 Example of a preamble acquisition with initial values for ‘DDS clock rate.’
Top plot shows the decision signal and bottom plot shows the successive
peak identification made by the timing circuit.

When the verification Matlab code was changed in order not to use the output of

the mixers of the System Generator design, it had been observed that the output of the

DDS blocks used for mixing purposes in the Receiver, which are blocks ‘DDS Compiler

v2 for 1s’ and ‘’DDS Compiler v2 for 0s in Figure 33, did not yield the proper output

signal. The change of the parameter ‘DDS clock rate’ that seems irrelevant was changed

for both the transmitter and the receiver in order to correct the output. The initial value of

500.0 (MHz) was changed to 100.0 (MHz). In this way the output waveforms of the DDS

blocks closely matched those predicted by Matlab simulation. The improvement to the

signal used to extract the timing was dramatic and many synchronization problems had

been solved as indicated in Figure 20. The Xilinx technical support replied that the ‘DDS

clock rate’ should match the ‘FPGA clock period’ defined in the Sysgen token. Thus,

because ‘FPGA clock period’ is 10ns, ‘DDS clock rate’ should be 1 100
10

MHz
ns

= . This

answer is not very convincing given that there is no reason to be able to define a

parameter that you must calculate uniquely from another parameter already defined.

Given that the ‘DDS clock rate’ defines also the upper limit of the output frequency as

explained in Section A.3 in Chapter IV, things are becoming more complicated. Further

research of the source of the problem must be made.

 42

Figure 20 Example of a preamble acquisition with final values for ‘DDS clock rate.’
Top plot shows the decision signal and bottom plot shows the successive
peak identification made by the timing circuit.

The synchronization circuit of the receiver had not been designed to be insensitive

to noise; except for some very limited capabilities that the ‘MCode0’ block in Figure 37

can yield. ‘MCode0’ was inserted to the design to implement the idea of a threshold that

a signal should exceed in order to be translated in/mapped to 0 or 1. The main problem

without that threshold was that even a small amount of noise to the channel would make

the decision circuit believe that there are transmitted bits and eventually it would match

the preamble to the random noise. Averaging the timing extracted over more than one

bits of the preamble would also give better immunity to noise. Then, the convolutional

encoder could correct the few mistakes made.

Another drawback of the program included in the ‘MCode’ block of Figure 37,

which is the main decision logic, is that there is no escape from going sequentially

through all the states. Once entered, it only searches to accomplish the criteria to enter the

next state up the last one. A maximum stay time at each state should have been given

after which, the state machine would start over. This is also a way to compensate for

noisy reception.

The counters of the receiver, i.e., ‘Counter 3’ in Figure 37 and ‘Counter 1’ in

Figure 38, are free running counters, which means that they never reset to restart

counting; they are only limited by the assigned output precision. The MCode block uses

these counters to record the time of some incidents. In case that the counter is reset at an

improper time, the relative timing of the incidents is destroyed. For example, ‘MCode’ in

Figure 38, counts 120 bit periods after the reception of the full preamble in order to

 43

search for a new preamble. If the counter resets during this counting, then the block will

stay in the waiting state for an unknown time. On the other hand, the counters will

eventually reset after exceeding the maximum assigned width of their output. For this

reason, a reset to this counter is needed but must be built in such a way that will not affect

the timing of the following MCode blocks. An attempt to solve that problem in ‘Counter

3’ of Figure 37 using the signal ‘reset_counter’ was only partially successful and was

disconnected.

The real function of these counters should be further analyzed. A state machine

that follows the flow diagram uses ‘Counter 3’ (Figure 37) and ‘Counter 1’ (Figure 38).

The counters serve to ensure that the exact time after the reception of the preamble had

past and a new search for preamble should be made. In detail, the ‘MCode’ of Decision

Circuit (Figure 37) detects up to the fifth bit of the preamble and then waits for 7872

samples123bits 64
bit

⎛ ⎞
⎜ ⎟
⎝ ⎠

i clock counts until the next detection. On the other hand, ‘MCode’

of Decoding Subsystem that detects up to the eight bit of the preamble, must count 120

clock counts (the counter now works in bit period because the signal had already been

downsampled by 64) until the next detection.

The FIR filters in the NC Matched Filter subsystem as illustrated in Figure 34,

were initially implemented by the respective FIR Xilinx blocks. The problem that

appeared was that Sysgen was always mapping these blocks to DSP48 cells (see the

section on DSP-Enhanced FPGAs in Appendix A). The number of DSP48 cells needed

for the four 64-coefficient filters is 128 cells, where only 48 are present in the chip. In

order to avoid this problem and given that all the coefficient were unity for that case, a

custom design was made as shown in Figure 21. In this way, not only the demand for

DSP48 cells were minimized but the demand for general blocks was lower as well. The

64 delay block is a pipe of 64 flip flops in a row. The ‘new value’ is the value that enters

the pipe and the ‘old value’ is the one that exits the pipe. The combination of ‘AddSub’

and ‘Accumulator 1’ blocks is responsible for accumulating every new value to the

current sum while subtracting the value that is 64 periods old. In such a way, the

accumulator always contains the 64 most recent values. The accumulation of garbage

 44

over time in the ‘Accumulator 1’ is possible. This hypothesis has not been confirmed

during the simulations, but is still a concern for the real circuit on the FPGA. A reset of

the accumulator when the message part of the packet is under reception would ensure that

no garbage is left in the accumulator.

Out 1
1AddSub

a

b
a - bz-1

Accumulator 1

b

rst
q

64delay

input value

new value

older valuesin input
2

reset in
1

Fix_13_10
Fix _14_10

Fix_13_10

Bool

Fix _13_10

Fix_24_10

Figure 21 FIR custom block.

The ‘Viterbi Decoder v 6_0’ in the Decoding Subsystem included in Figure 38

appears in green, which means that an extra license must be granted by Xilinx. In this

case, a 90 days free license, which is offered to anyone through the Xilinx website, was

acquired in order to verify the functionality of the design. In any case, the verification of

the circuit was made before the Viterbi Decoder block because the exact number of errors

should be revealed and not be covered by corrections made by the decoder.

The verification of the design was illustrated in this chapter. Many of the

problems encountered were also exposed and useful lessons learned were also described.

This part concludes the discussion about the design. The next chapter summarizes the

work that has been done in this thesis and proposes possible expansions and follow on

work that can be made.

 45

VI. CONCLUSIONS

 A. SUMMARY OF THE WORK

The concepts of Software Defined Radio (SDR) and Binary Frequency Shift

Keying (BFSK) modulation were introduced and the application of Field Programmable

Gate Arrays (FPGAs) to SDR was further examined. The capabilities offered by the

FPGAs to easily transform a design to circuit were used to build a BFSK transceiver.

Xilinx System Generator was used to design a data aided BFSK transmitter and

receiver. Extensive simulation assures their proper function. Matlab code was used to

verify the results taken by the simulation. The designs were finally placed and routed to a

Virtex-4 FPGA to ensure that no errors occurred during that process.

Appendix A includes an introduction to FPGAs, their internal structure and their

utilization in the SDR concept. Extensive descriptions of all the blocks used and the

parameters assigned to each block are given in Appendix B. This facilitates the

reproduction of the design and gives a better understanding of how System Generator is

working. In Appendix C, the Matlab code used to simulate the decision signal is given.

The reproduction of the whole circuit is not as important as the reproduction of the

decision signal, because this is the most crucial parameter in the whole design.

B. SIGNIFICANT RESULTS

The concept of Software Defined Radio proved to be fully realizable and both the

designs of the transmitter and receiver do not exceed in total the capacity of a moderate

FPGA, after being placed and routed. The device utilization summary for the transmitter

and receiver is shown in Table 3. The amount of work needed to design a fully functional

transceiver was mostly consumed in the learning of the System Generator blocks and ISE

suite, which is an overhead not needed for follow-on designs.

 46

 Design Type

Number of
Transmitter Receiver Total

DSP48s (total: 48) 0 (0%) 4 (8%) 4 (8%)

Block RAMs (total: 72) 4 (5%) 10 (14%) 14 (19%)

Slices (total:10752) 177 (2%) 3616 (34%) 3793 (35%)

Table 3. Device utilization summary.

The simulation proved that the receiver works as expected and when noise is not

present, no errors were generated by the receiver. The preamble was correctly positioned

in front of each packet, with the exception of the first one as discussed in Section C.1,

Chapter V. The preamble helps the receiver to identify the beginning of every packet and

extract timing information. The receiver then removes the preamble and decodes the

received sequence. Any few errors made by noise are corrected by the Viterbi decoder.

No timing errors were identified during the place and route process made by the ISE

software.

C. SUGGESTIONS FOR FUTURE WORK

1. Limitation of the Design

The timing circuit is not built to be very tolerant to noise. The main reason for the

susceptibility to noise is that the state machine (MCode in Figure 37) incorporated in the

receiver, does not include an abort condition in case there is a misinterpretation of the

decision signal. Specifically, if the noise exceeds the threshold chosen at the specific

period that the circuit tries to identify the existence of the first bit of the preamble, the

state machine is obliged to enter the next stage and does not abort until it goes through all

the states sequentially. Then it must wait a packet period until it search again for a new

preamble sequence.

The frequencies used are not orthogonal according to the definition given in

Section A in Chapter II. This was due to the initial implications described in Section B.2

in Chapter V. In order for the two frequencies to become orthogonal, they must differ by

 47

integral multiples of the channel bit rate 8
. .

1 10
64c bR = Mbps. In this case, the frequency

separation should be multiples of 1.5625 MHz. For example, if 1 40f MHz= , the other

frequency could be 2 43.125f MHz= .

The limitation of the free running counters must be also addressed. As explained

in Section B.2 of Chapter V, the current configuration only guarantees the reception of

less than two thousand message bits, before the counters are reset and a critical error may

occur. The extension of the free-running counters from 18 bits to a higher number would

only give some more space, without eventually solving the problem. A reset signal

should be inserted at a proper time that will not affect the rest of the design.

Pulse shaping is not used in the design, but would likely help to suppress Inter

Symbol Interference [27, pp. 233-244], provided it was done in a way that preserves

orthogonality. The realization of filters in System Generator is made easy by the use of

Xilinx ‘FDATool’ and ‘FIR Compiler’ blocks. ‘FDATool’ interfaces the Simulink Signal

Processing Toolbox to offer a graphical interface to design digital filters. ‘FIR Compiler’

can be also used alone in case the coefficients are precalulated.

2. Suggestions

The design presented is a good starting point for a design including extra features,

such as noise tolerance and pulse shaping. These features are optional but will make this

implementation more useful in practice. Then the design should be more exhaustively

verified after transfer to the FPGA to assure proper timing of the components. The

simulation under System Generation is cycle and bit accurate [12]. In this sense, even if

no timing errors were created after place and routing and the simulation under System

Generator verified the proper function of the circuit, further verification of the design

after implementation is compulsory. Chip Scope Pro is a useful way to test the design

after download to the target FPGA. In order to do so, pins to ‘Gateway In’ and ‘Gateway

Out’ blocks must be assigned. These pins must be the ADC input to and the DAC output

from the board.

 48

The DDS clock rate discussed in Section B.2, Chapter V, must be further

examined and the connection of the parameter to the DDS block must be further

examined. Even if in this design the output frequency of the block is correct, there is no

guarantee that it will work as well under different design parameters. Even the extensive

documentation included in the online support page [14] does not give clear answers about

the relation between the DDS clock rate, the output frequency of the DDS block, and the

FPGA clock period in the Sysgen token.

Except the problem with the DDS block, there are other less significant design

errors to be solved. The delay after the first preamble, as presented in Section B.1,

Chapter V, should be further examined. The cause of this delay is currently unknown and

could not be solved with change of the delays’ values included in the design. In the same

section, the inability to detect incoming message bits is also discussed. This may be a

severe limitation in real-life implementations.

After proper verification of the design, thorough tests under different levels of

noise could be done. Bit error rate and Signal to Noise Ratio can be plotted and compared

to the theoretical performance of a non-coherent BFSK receiver. In this way this design

will be fully documented.

This design can be used as a foundation for designs using more complex

modulation schemes. The extension to M -Frequency Shift Keying (M FSK) is likely

straightforward and modification to Binary Phase Shift Keying (BPSK) should be easy,

although it would require carrier frequency and phase synchronization [27, pp. 270, 295].

In this manner, a database of modulation schemes can be created leading closer to the

ultimate goal of a multimode SDR transceiver.

The electronic files that contain this design are on file with the manager of the

Cryptologic Research Laboratory [28]. Helpful support documentation from Xilinx is

discussed in Section C, Chapter III.

 49

APPENDIX A. BACKGROUND ON FPGA AND TECHNOLOGIC
BACKGROUND

This Appendix introduces the internal structure of Field Programmable Gate

Arrays, their function and how they are implemented in the Software Defined Radio

concept. An evaluation of different technological options in implementing

communication modulating techniques and Software Defined Radio follows. A

comparison between these options is also included.

A. BRIEF DESCRIPTION OF AN FPGA

Xilinx Inc. invented the FPGA in 1984 [29]. As electronic circuits were

becoming more advanced, the glue logic [30] was getting more complex and

improvements to the Complex Programmable Logic Devices (CPLD) were needed to

handle more demanding applications. FPGAs came as a logical advancement to help

interconnect large integrated circuits providing more printed logic and incorporating

more gates.

Initial manufacturing technologies of FPGA included antifuse, Static Random

Address Memory (SRAM), Electrically Erasable Programmable Read-Only Memory

(EEPROM) and some minor types [31]. Their difference is that SRAM requires external

boot devices but it is reprogrammable, antifuse is one time programmable and EEPROM

is reprogrammable and does not need an external boot device. Nowadays, the main type

used is SRAM, except when reprogramability is not a mandatory feature, in which case,

antifuse is a cheaper solution.

 50

Figure 22 Simplified Version of FPGA Internal Architecture (From: [32]).

High Speed Very Long LinesEfficient Long Lines

Global Network

Ultra-Fast
Local Routing

Clock Aggregation
(Splittable Clock
Spine)

High Speed Very Long LinesEfficient Long Lines

Global Network

Ultra-Fast
Local Routing

Clock Aggregation
(Splittable Clock
Spine)

Figure 23 Typical FPGA architecture (From: [33]).

LOGIC
TILES

 51

A Field Programmable Gate Array is a two dimensional array of logic blocks and

flip-flops with electrically programmable interconnections between them [32]. These

interconnections can be identified in Figures 22 and 23 [33] and are distinguished in local

(or short) and long routing lines. Logic Tiles, also called Logic Slices according to other

manufacturers, are the smallest blocks of logic. Due to its versatile structure, a different

primitive operation (addition, multiplication, etc.) can be assigned to each Logic Tile. In

order to build more complex functions, many Logic Tiles are attached to an adaptive

network. Electrically programmable switches (as shown in Figure 23 under the subtitle

Routing Switch) are responsible for customizing the network.

From the aforementioned description, it is possible to identify the two

configurable aspects of FPGAs:

• The function assigned to each logic block. This function is going to define
which elements inside the logic block will be activated in order to yield
this specific function. The logic block itself must have a structure that may
support a wide variety of different logical functions. One such structure of
great importance is that of a Lookup table.

• The interconnections between the logic blocks. The combination of many
primitive functions assigned to different blocks can give a very complex
functionality as a result. Due to the way that this function is implemented,
it may even be executed faster than when a microprocessor is used instead.
Nevertheless, it should be kept in mind that this flexible routing adds
much overhead to the chip itself. It consists of a wiring grid controlled by
electrically programmable switches and the interconnection overhead can
even be close to two thirds in terms of power consumption and silicon in
deep submicron processes [34]. The higher the flexibility of routing in an
FPGA, the higher the utilization of the logic and the lower the density of
logic block. The manufacturers of FPGAs should always consider this is a
tradeoff for their products.

In Application Specific Integrated Circuits (ASICs), no need exists for logic tiles,

nor for long routing lines, because the operation of its logical components is prespecified

and sequential logical blocks are placed during manufacturing process closer to each

other. This makes the design much more concentrated and more efficient but it lacks the

main characteristic of FPGAs, versatility and upgradability [76].

A detailed description on FPGAs is given in [35], which can be used for further

reference.

 52

B. ADVANTAGES AND APPLICATIONS OF FPGAS

Until fairly recently, FPGAs did not have enough gate capacity or computational

power to implement digital signal processing (DSP) tasks. They have also been perceived

as being expensive and power hungry. The versatility and the extra capabilities that they

acquired after the change of the century did change many of their applications. One of

their newest features is the introduction of new hard embedded multipliers, which yield

extra DSP capabilities. A detail description of the embedded multipliers is given later in

this chapter.

The synthesis and development tools have also evolved and include many

different design environments. Except for the Hardware Description Languages, every

FPGAs manufacturer offers a proprietary designing suite consisting of block diagram

designing tools or schematic processors. These tools are time and signal accurate and

their ease of use minimizes the learning curve and the debugging process, which in turn

leads to short time to market. Intellectual Property (IP) cores are also available, which are

designs implementing complex functions that can be incorporated into other designs for a

fee. Usually, these are also available from third party vendors and their acquisition

accelerates the time to market and reduces the need for proficiency in designing FPGAs

[36].

An example of great interest is mobile communications. The newer CDMA2000

EVDO and W-CDMA standards demand computationally intensive digital signal

processing, which requires much power. The ASIC solution is always better suited in

such an environment, but the lack of upgradability makes it undesirable. The standards do

not last for more than four to five years, making the replacement of the hardware at a

base station uneconomical. The FPGA is the solution that closely matches the

effectiveness of ASICs retaining at the same time the ability to upgrade [37].

Another important feature of FPGAs is their ability to conform to today’s general

trend towards system-on-chip (SoC), thus making the integration of many different

circuits in one single chip a reality. This saves both money and space, offering high

 53

bandwidth between devices. FPGAs are used for many diverse applications including

ASIC prototyping, digital signal processing, medical equipment military systems,

Artificial Intelligence (AI) and cryptography [38].

The characteristics explained in detail above yield designs implemented in FPGAs

with short time to market and reduced cost of development. Also, the maintenance and

upgrade cost can be minimized, if this is applicable to the specific application.

C. FPGA VS. GPP

Until recently, the fabrication, or engraving, process for General Purpose

Processors (GPPs) were one generation ahead of the engraving process for FPGAs.

Nowadays, this is no longer true. The current generation of Intel’s Penryn® processors

uses 45nm lithography for engraving and both the MIPS32 74K and ARM Cortex®-A9

utilize a TSMC 65nm generic process [39]. Today, the manufacturing process of FPGAs

has closely matched that of GPP with Xilinx’s latest FPGA series Virtex®-5 [40] and

Altera's Stratix® III [41] using a 65nm engraving process. Altera also recently released

the 40nm Altera's Stratix® IV series [42].

The benefit of switching to a smaller manufacturing technique is to shrink the die,

even though there may still be more circuits packed. Therefore, the question is how

efficiently the extra gates can be used. In the past, this extra silicon was used first for

deeper pipelines with more complex prediction circuits, then for more on-chip cache

memory, and finally to add more cores. A multicore processor is a single chip containing

multiple processing engines that may share common resources, such as cache memory.

Each of these techniques ended at a point of diminishing returns. The only hope is that

the addition of more cores could yield the extra computational power needed, but

efficient multicore programming is a challenge. The traditional programming techniques

could not be used to take advantage of the multicore GPPs and more time will be needed

in order to have mature parallel programming.

FPGAs can use the extra silicon in a more application-specific way. It is easier to

build a circuit that uses parallelism than to write a similar program in software. Thus,

while technology advances and offers higher density chips, it is always possible to make

 54

use of this increased amount of logic in FPGAs. This is not the case in GPPs [43]. The

first implementations of SDR were using mostly GPP [44], but the evolution of DSP

made them less practical. Nowadays, the GPP is extensively used for another purpose; it

is responsible for the network protocols and any application used. The new generation of

FPGAs is also offering IP cores of soft processors, eliminating in many cases, the need of

an extra GPP. Following this philosophy, ACTEL offers the Cortex-M1 [45] and ARM 7

and Xilinx offers the PowerPC 440 [46] soft processors.

Although ARM processors seem to dominate the GPP market for portable

devises, the STI’s (Sony, Toshiba, IBM) Cell processor and other completely new

products launched this year also exist but they have not been given time to prove their

capabilities. Some of these products include Intel’s AtomTM [47] and Via’s NanoTM

processors [48].

D. FPGA VS. DSP

DSP chips provide good performance and usually offer an easier development

process, which also means quicker time to market. Some modern DSP chips are very

capable and they sometimes feature on-chip Viterbi and matrix multiplier coprocessors

and a plethora of connectivity and memory options [56]. The first in line is Texas

Instrument® TMS320C6455, which has a 1.2 GHz clock and is engraved with 90nm

process technology and executes up to 9600 million instructions per second (MIPS) [49].

Another high end chip is Freescale’s MSC8144 multicore DSP [50], which can be

accompanied by the MSBA8100, an accelerator for Fourier transforms and channel

decoding, which is especially made to accelerate 3G-LTE, WiMAX and 3GPP-R6. Each

of the four cores of MSC8144 runs at 1 Ghz and was the best performer among DSP

chips on some tests made by Berkeley Design Technology [51].

High power consumption is another drawback of DSP devices. Mobility is of

much concern nowadays including portable wireless devices, and in the future, this

demand will likely increase. Many Bluetooth and WiFi products exist and the demand for

mobile communication will grow, requiring even more efficient DSP techniques. Much

research has shown that DSP chips consume much more energy than ASICs or even

 55

FPGAs. In “BDTi Focus Report: FPGAs for DSP, Second Edition,” [52] there is an

extensive analysis and comparison of the consumption of different kinds of chips, leading

to the conclusion that the parallelism inherent in FPGAs can save much energy compared

to the same number of DSP cores. As stated in “FPGAs vs. DSPs: A look at the

unanswered questions” which is an abstract of the BDTi report, it is mentioned that in

DSPs only a small fraction of the silicon real estate is devoted to the actual calculations

while most is assigned to the transportation of data to the correct place. Therefore, they

conclude that “it would be a mistake to assume that FPGAs are inherently less energy

efficient than DSPs”. Then, an example exemplifies that even though the raw power

consumption of a FPGA is much higher than a comparable DSP, the FPGA can handle

many more channels per chip, leading to only a fraction of the power consumption per

channel of the DSP.

DSP performance cannot easily compete with either ASICs or FPGAs and the

main reason is that DSP chips are serial processors, even if many of the DSP applications

can widely benefit from the inherent parallel structure of both ASICs and FPGAs.

According to Douang Phanthavong [53], FPGAs that have been optimized to

perform a digital-signal processing task, will run anywhere from 10 to more than 1000

times faster than a stand-alone DSP device. This is the main reason that modern DSPs

include special coprocessors. Especially for communication applications, Viterbi and

Turbo code coprocessors have been developed, suppressing the need of using multiple

DSPs [37]. However, not all needs can be satisfied by special coprocessors and the

unlimited customization that FPGAs offer can match the needs in a more favorable way

[53].

An example from “Embedding FPGAs in DSP-driven Software Defined Radio

applications” by Rodger Hosking and Richard Kuenzler examines the case of a wideband

Finite Impulse Response (FIR) digital filter. Assuming that this filter requires 32

Multiply ACcumulate (MAC) operations in every clock cycle, it is easy to incorporate 32

MACs in an FPGA design, which are hardwired, yielding greater speed. In contrast,

DSPs usually incorporate only two multipliers and will be considerably slower. Notice

that a hardware MAC can be clocked up to 500 MHz [54].

 56

E. FPGA VS. ASIC

ASICs are hardwired [32], custom chips designed for a specific application

instead of working as a GPP. They are hard to compete with any other type because they

encompass all the most wanted characteristics. At the same time, ASICs can achieve

energy efficiency, low cost and high performance. They have only one drawback. They

ask for all the design effort and most of the expenditure to be made upfront and no

changes can be made without paying again all this costs.

ASICs emerged in the place of DSPs offering better performance, power and cost

compared to the latter, because they could use the silicon estate more efficiently. In

ASICs, only the compulsory interconnections and the exact number of logic cells exist.

Thus, in high volume the price per unit is definitely cheaper than any other chip [55]. As

stated, the DSPs do have a fixed cost regardless of the purchased quantity. In addition,

FPGAs cannot use their silicon as efficiently because of the interconnection overhead.

However, this aspect only accounts for one side of the coin. In order to produce ASICs, it

is necessary to first print the corresponding masks. This cost is included in the

nonrecurring engineering (NRE) costs and make the production of small quantities

prohibitive [56].

Having a perfectly matched ASIC to a specific application does not always solve

all the problems. Even if this approach is guaranteed to achieve the maximum speed

along with minimum resource consumption, it demands much time for the initial design,

which increases exponentially with its complexity. Nowadays, with very short products’

life, even a delay of some weeks may force a product to lose the market window with

catastrophic results in the sale sector.

Upgradability and reprogramability are additional characteristics missing in

ASICs. Opposed to FPGAs, ASICs must be designed and manufactured to exactly the

specifications imposed. If not, most of the NRE must be paid again plus any extra

expenses to retire the defective products from the market. This process is expensive and

 57

undesirable. On the other hand, FPGAs can be even shipped with bugs and then be

corrected by a simple download (if correct measurements are taken for that purpose). For

DSPs, which work based on software, reprogramability is also viable.

In conclusion, it is becoming harder and harder to find devices that have the

luxury of being time to market insensitive and high volume cost effective. In addition,

even in that case, there is a place in the market for FPGAs to equip the first versions of a

new product, until the design is proven to be robust. FPGAs do not outperform ASICs

neither in terms of speed nor in power consumption. Nevertheless, this margin is not as

significant as that between DSPs and FPGAs.

An optimized implementation in FPGAs can be almost as good as one in ASICs,

additionally offering the ability for future upgrades and the flexibility of a System on a

Chip. This flexibility is acquired at the expense of price per unit. Accounting that FPGAs

do not demand significant NRE costs, there is a place for them in the market. It is hard to

approximate the quantity that is the turning point to the curve. As the engraving process

shrinks, the expenses associated with the manufacturing of fabrication units for ASICs

goes up. In order to keep the manufacturing cost of ASICs low, they should be engraved

using larger scale making the comparison between ASICs and FPGAs even vaguer [57].

F. DSP-ENHANCE D FPGAS

It has been seen that each category of chips has its own virtues and shortcomings.

In order to increase capabilities, companies have tried to combine features of different

classes in one chip. Following this logic, new FPGA models have embedded DSP cells

and the companies have created synthesizable Intellectual Property (IP) cores to

accompany their chips [56].

Regarding DSP embedded capabilities, both Altera's Stratix I family and Xilinx's

Virtex-II family already offer some architectural enhancements to increase DSP

efficiency. These DSP capabilities were provided by hard-wired on-chip multipliers

intended to offer acceleration to operations like multiply-accumulate (MAC) or multiply-

addition (MADD), which is very common in DSP algorithms like the Fast Fourier

Transform (FFT) and Finite Impulse Response (FIR) filters. The core of a typical DSP

 58

block consists of a multiplier followed by an adder and many registers at the inputs and

outputs of the cell (Figure 24) [58]. DSP cells can also be cascaded, which adds more

flexibility in applications like FIR filters.

Figure 24 Internal Structure of a DSP48E cell. (From: [58])

As an example, in their newest chips, Virtex-5 Xilinx is offering the DSP48E

slice, which is a 25-bit by 18-bit multiplier along with a 48-bit accumulator. This offers

impressive performance including speed and power while using little silicon real estate.

The number of DSP slices is limited to a number between 32 and 192, but still, the DSP

acceleration they offer is noticeable. For even greater convenience, the many library

blocks can be optionally implemented using these DSP slices, yielding very fast designs.

Figure 24 shows the block diagram DSP48E [59].

Regarding soft cores, Actel delivers synthesizable versions of ARM7 (CoreMP7)

and ARM Cortex (M1, M3) free of charge. Advanced RISC Machine (ARM) processors

in their hardwired form are processors mainly developed for mobile devices with a

Reduced Instruction Set Computing (RISC) core. The mother company that develops the

new ARM processors only licenses them without manufacturing them on its own. Every

respective vendor in the electronics sector owns at least one license. ARM’s new line of

products also includes synthesizable cores, like the older ARM7 and the new Cortex that

 59

can just be downloaded to an FPGA. Thus, inside an FPGA it is possible to have a GPP

plus some silicon left for other designs. The embedded cores can run different real time

operating systems (RTOS) and support modern connectivity protocols, like Gigabit

Ethernet and RapidIO [60].

Xilinx went one step further by producing FPGAs with built-in PowerPC® 440

blocks. In some models of Virtex-5, Xilinx even includes two PowerPC cores [61]. Altera

is not only offering its own RISC version (Nios® II) along with ARM Cortex M1, but

recently updated with the Freescale’s 32bit V1 ColdFire [60]. Freescale is another

manufacturer that produces microprocessors for embedded devices and its ColdFire chip

is a 68k series microprocessor.

Regardless of the previous advancements, some operations still exist that are not

suitable for FPGAs, like division by a number not a power of 2 and especially between

floating point numbers [62]. Sometimes, these operations are implemented with look-up

tables, but there are some shortcomings that are easier to implement in DSP chips. For

this reason, modern platforms force DSP and FPGAs to coexist in order to achieve

maximum performance.

G. THE ROL E OF FPGAS IN SDR – HOW TO COMBINE DSP-FPGA
COPROCESSOR

A goal of SDR is the ability for a single transceiver to conform to multiple

different air interfaces and modulation formats. The design that would accommodate all

present and future needs of a SDR product must be flexible, scalable and of high

performance. The use of many DSP processors in parallel configuration is not practical

because of complexity and power consumption. Furthermore, there should be a margin

between the performance of the processor and the current needs in order to accommodate

any future demand. An example granted from the video compression area of mobile

devices is the comparisons of the standard MPEG-2 with the newest H.264. The

algorithmic complexity of high definition resolution H.264 is three times that of standard

definition resolution MPEG-2 video compression, which is translated on an order of

 60

magnitude increase in system performance. Thus, there should be enough computational

power even for future standards. Otherwise, no update can be performed, thus reducing

versatility [63].

This reconfigurability does not come without a computational cost and

complexity cost, because analog parts cannot be used extensively anymore and digital

circuits do not always have the bandwidth to support wideband communications. As it

has been demonstrated, one family of chips cannot provide all the characteristics needed

in order to make SDR a reality. The power of modern FPGAs offers much flexibility and

can help realize the SDR concept. Nevertheless, in order to combine all features needed a

cross-chip platform is necessary. In practice, typical SDR platforms include all three

DSPs, FPGAs and GPPs to deal with the complexity, cost and power constraints.

The initial use of FPGAs as mere interconnecting logic between external

interfaces and computational chips (or chips in the system) or between DSPs and GPPs,

has now changed. FPGAs are also used as fabric where special circuits are built, in cases

where speed requires implementation of these DSP functions in hardware. Thus, they are

used as coprocessors to either DSPs or GPPs, in order to accelerate some functions that

are frequently used or could benefit from a parallel structure. Tools provided by the

manufacturers of the FPGAs make the mapping from high-level languages to Hardware

Description Languages (HDL) easy to use [64].

The different functions that usually are assigned to these devices are illustrated in

Figure 25 [65].

 61

Figure 25 Different Functions Assigned to GPPs, FPGAs, and DSPs (From: [65]).

An FPGA used as a coprocessor seems to yield a balanced solution. In such cases,

the DSP code must be partitioned into the parts that will be executed by the DSP

processor and by the FPGA. In “Hybrid FPGA/DSP architecture: the optimal solution”

by Jeffry Milrod [66], the author mentions that the FPGA should be placed close to the

signal I/O. This configuration can use the FPGA as a reconfigurable I/O controller in

support of various standards (like PCI express, GigabitEthernet etc.). Also, it solves the

bandwidth problem of connections between fast I/O devices and the core.

The general guidelines that should be followed during the design of such systems

are described in [67] and include the folly of trying to transfer a code previously written

for a DSP platform to the new architecture. The serial, sequential logic of a DSP has

nothing to do with the parallel logic of FPGA designs. Other guidelines refer to the split

of tasks executed between each of the two chips, suggesting that the control part should

be better instantiated in the FPGA, because many soft embedded processors are offered

for FPGAs. The paper also refers to the evaluation of different choices regarding

intellectual property in the design. While producing an intellectual property is more

expensive, time to market may force its purchase.

 62

Another point of great importance is the bandwidth of the interconnection

between the DSP and the FPGA. In hybrid architectures, much data is going to go back

and forth between the main computational elements, depending on where the

computation is more efficient. Thus, in order to be applicable in practice, the interfaces

must be of low latency and fast [68].

Texas Instruments' Small Form Factor Software-Defined Radio is an

implementation example that uses Xilinx Virtex-4 SX-35 FPGA, TI's TMS320CC64x, a

600 MHz chip, DSP and an ARM926EJ-S processor. As expected, the DSP undertakes

the signal processing load, while the GPP supports network and application processing

and the Virtex-4 is used for modem co-processing and acceleration functions. The

manufacturer claims the existence of both a DSP and ARM on a single chip has the

benefit of reduced system space and cost [69].

H. BEYOND THESE TECHNOLOGIES, WHAT NEXT?

Some new technologies advertise a combination of both FPGA and ASIC

benefits. Usually the chips implementing these technologies offer partial reconfigurability

keeping other parts hard-wired, placing themselves in between the two extremes. Others

are highly parallel devices that incorporate an internal structure to implement the difficult

problem of massive parallelism efficiently. Nevertheless, none of these technologies have

gained a dominant position in the market [70].

The eASIC is promoting the so called Second Generation Structured ASICs,

Nextreme2™ [71]. It is a 45 nm design that belongs to the category of ASIC-FPGA

Hybrids. The exact way this is implemented is very well illustrated in Figure 26 [72]. The

specific choice of using routing via single mask eliminates the need for a very large

overhead of SRAM elements that the flexible routing would need. In this way, the current

consumption is reduced, keeping in mind the current leaking that SRAM elements

encounter. The cost per chip is also suppressed while keeping the mask charges very low,

which in turn removes the minimum quantity constraints that conventional ASICs would

have.

 63

Figure 26 Illustration of the concept behind eASIC’s structured ASICs (From: [72]).

On the other hand, Nextreme retains the internal structure of cells, called an eCell,

the same as FPGAs. This allows some of FPGA’s flexibility and reconfigurability. The

company advertises the cost of the development tools as well as time to market similar to

that of FPGAs. Nextreme can host a plethora of soft cores, including ARM 926EJ, and

Tensilica Diamond Standard Processors, which are mainly for audio processing.

There are two device options, one for prototyping and one for mass production.

The method used to customize the interconnections in this product is maskless

lithography and is called the Direct-write e-Beam. This technology uses an electron beam

to write directly on the wafer. The paper [73] on the company’s website describes this

technology.

The PicoChip’s picoArray™ is another architecture that has managed to

differentiate from the competition. It consists of a massively parallel design where 308

tiled processors are connected in a 2D grid. These 16-bit Harvard processors each have a

small local memory and each one runs its own process. For proper interconnection, they

are all attached to a network of 32-bit buses, the picobuses, and programmable bus

switches. Multiple picoArray cores can be used in a parallel structure to give even more

computational power. In each picoArray, multiple functional acceleration units (FAU)

exist for speeding some specific tasks, like Advanced Encryption Standard (AES)

encryption. Some models even have an embedded ARM-9 processor. They have proved

 64

to have very good processing capabilities in known DSP calculations, like the FFT or

IFFT, and error control coding and decoding. This chip has been deployed in wireless

infrastructure [74]. See Figure 27 [75].

Figure 27 PicoArray Concept (From: [75]).

I. LIMITATI ONS

The question that arises naturally is if the ultimate goal of software radio can be

achieved. This goal is to build devices that can handle every possible modulation by just

loading the proper software. As described in [76], some parts of the radio are not even

close to digital implementation due to cost or space. The main limitation arises from

Digital to Analog Converters that are not fast enough for most Radio Frequencies (RF).

The solution usually used is to perform analog to digital (Rx) and digital to analog (Tx)

conversion at a low intermediate frequency (IF). The conversion between the IF and RF

is usually performed using analog hardware. The advances made in that domain do not

seem capable of changing that in the near future.

 65

APPENDIX B. IN DEPTH PARAMETER ANALYSIS OF BFSK
TRANSCEIVER DESIGN

In this Appendix, a description of the specific function of each block and the

settings of its parameters can be found. The reading of this Appendix in parallel with

Chapter IV is proposed for someone not familiar with the Xilinx environment in order to

acquire a better overview of the meaning of each block. It is also useful as a reference

guide to someone that would like to reproduce the circuit or use it as a platform to

extended to a different modulation scheme.

A. TRANSMITTER (TOP LEVEL)

preamble with sequence
10101001 . Every 128 channel *

bits repeat the sequence

first select the
preamble , then the

input sequence . Repeat
every 128 bits.

*Note : from the 128 bits , 8 are the preamble and 60 (doubled by the convolver) are the actual info bits .
Channel bits are defined the preamble plus the the output bits of the convolutional encoder .

Exception is the last packet includes only 58 info bits in order to accommodate 4 trail bits

To Workspace simout

T3

Scope

Sample Time 2 ST

Sample Time 1

ST Sample Time

ST

Resource
Estimator

Reset
 In

Preamble Subsystem

reset

enable

preable_invalid

preamble_seq

read_out

Mux1

sel

d0

d1

en

 z-1

Modulation Subsystem

channel bits

enable

reset

modulated signal

Gateway Out
 Out

Gateway In
 In

From
Workspace

[(0:373)*T;1 s s s s s s 0]'

Enable
 In

Display 2

1Display 1

128 Display

64

Delay 1 z-1
Data Input Subsystem

read_enable

data_in

reset

data_seq

TX ready

encoded seq
read enable

Constant

1

System
Generator

UFix_1_0

Bool

Bool

double

UFix_1_0
double

UFix _1_0

double

Bool

Fix_6_4double Bool

UFix_1_0

double

double

Bool

double

double

double

Figure 28 Transmitter’s schematic diagram designed in Simulink/Sysgen environment.

• System Generator: its existence is compulsory to every design. It defines
the type of target FPGA the FPGA clock period, and other key parameters.

Key parameters:
Part: Virtex-4 xc4vlx25-10sf363.This is the target FPGA.
FPGA clock period (ns):10.

 66

Clock pin location: A8. This choice depends from the actual pin that the
mainboard provides the clock pulses and it is found in the board’s manual.
This parameter is crucial for proper function of the design on the FPGA
and post place and route simulation is not feasible if this parameter is not
defined.
Simulink system period (sec): T/128. This number is defined by the faster
component of the design. The value T corresponds to the desired
information bit period and equals 128*10 ns. The simulation of the design
is made with time steps of T/128 sec, as defined in Simulation Tab -
>Configuration Parameters in the Simulink window. In explicit, when a
block is defined to work at a sample period T, it yields an output once
every 128 Simulink periods. In this case, the ‘System Generator’ block
only defines the basis for the other blocks. When a block has sampling
period T, it yields output 128 times slower than the reference period.

• Resource Estimator: It is a block that provides an estimate regarding the
FPGA resources that are required to build the circuit.

• From Workspace: inserts variables from the Matlab Workspace.

Key Parameters:
Data: [(0:1901)*T;1 a 0]' where a =rand(1,1900)<.5 is executed in the
Matlab Command Window.

• Gateway In, Reset, Enable : converts the input to Xilinx fixed point type.
The part of the design that is after this block is synthesized by System
Generator. The block itself becomes a top level input port.

Key Parameters:
Output type: Unsigned consisted of 1 bit. The input is 0 or 1.
Sample period: T. The block is working at the Simulink simulation period
and 128 times slower than the reference.

• Sample Time1 : illustrates the simulation period concept discussed in the
System Generator’ block. It uses a display block to report the normalized
sample period value. A value of 128 that is shown in ‘Display 1’ means
that the input is 128 times slower than the reference. For the specific case
that the ‘System Generator’ block has a value of T/128, it means that the
previous block of the ‘Sample Time 1’ has a sample period of T.

• T3: terminates the its input to avoid warning messages. It also means that
its input is not considered useful in this design. In this case, the ‘TX ready’
signal proved not to help the problem of the gap between the preamble and
the encoded bits as discussed in Section C.1, Chapter V.

• Mux1: multiplexer with select (sel) of type unsigned and configurable
number of data bus inputs (d0,d1). The Enable port (en), which is optional,
forces the latency to be more than 1. The exact value of latency is also
shown on the block’s figure as the negative exponent of the z symbol.

 67

• Delay1: Multiple delays are spread over the design. Sometimes their role
is to ensure timely propagation of the signals, other times they take care of
the synchronization of different branches of the design. This is one case
that delay should not have been used, because the scopes are not
synthesized in contrast to the delay blocks. The proper way is to use a
‘Gateway Out’ block and Simulink’s delays right after.

• Sample Time, Sample Time2: As discussed in ‘Sample Time1.’

• Gateway Out : Opposite functionality than ‘Gateway In.’ It converts the
Xilinx fixed point input to a Simulink compatible type. These blocks are
synthesized in top level output ports.

Key parameters:
Input/Output Buffers (IOB) pad locations:
{'U9','V9','V10','V11','P19','U12'}. These are the output pins from Most
Significant Bit to Least Significant Bit. The number of the pins is equal to
the number of the output bits.

• To Workspace : Stores the values presented at its input as a Matlab
variable for further analysis in the Matlab Environment. In this case, the
data will be forwarded to the receiver’s input.

Key parameters:
Variable name: simout. This is the name of the variable that will store the
output values of the Transmitter. They can be recovered through the path
simout.signals.values because simout is a structure that saves other
information like the time that corresponds to the respective value.

B. PREAM BLE SUBSYSTEM

storage of the
preamble
 sequence

Counts up to 7 before
 release the transmission of info bits

Note :From each info bit , I get
2 channel bits (due to convolutional

code 1/2). That is why the preamble 's
clock is set at twice the speed .

read _out
3

preamble _seq
2

preable _invalid
1

Scope 1

Relational 1

a
b

a>b
z-1

ROM

addr z-1

Delay 4

z-0

Delay 2

z-0

Delay 1 z-0

Counter 1

rst

en
out

Convert 1

cast

Constant

7

enable
2

reset
1

UFix _7_0

UFix _4_0

UFix _3_0
Bool

double

double

Bool

Bool

Bool

UFix_1_0

Figure 29 Preamble Subsystem.

 68

• Counter1: A counter should be thought of as a clock with an adder. Its
output can be usually used by comparators to enable or disable signals. In
this case, the counter is also used to directly provide the next address to
the ‘ROM’ block.

Key parameters:
Count to value: 127. This depends on the packet size and corresponds to a
packet length of 128.
Number of bits: 7. This number must merely accommodate the maximum
value of the counter. In this case, seven bits are enough to represent the
maximum value of 127.
Explicit Sample Period: T/2. In this case, the preamble has bit period equal
to the encoded bit period. For the specific encoder of choice, this means
that the encoded bits should have half the period of the message bits.
Recall that the ‘Gateway In’ has sample period of T.

• Convert1: Translate the input to a desired output type. The need that
forces its use is that the ‘ROM’ block does not accept addresses that are
not compatible with its depth.

Key parameters:
Output precision: 3. The 7 bit output value of the ‘Counter 1’ must be
converted to 3 bits input to the ‘ROM.’
Overflow: Saturate. Does not have any specific impact to the performance
of the design, just makes it easier to see the output plots in ‘Scope1.’ The
‘ROM’ output will be always the last bit of the sequence while the counter
output will be more than seven.

• ROM: It is a single port read-only memory (ROM). The preamble is
stored in this memory, given that it does not change over time.

Key parameters:
Depth: 8.
Initial value vector: [1 0 1 0 1 0 0 1]. This is the preamble sequence.
Number of bits (Output Precision): 1

• Relation1: It is a comparator that can support a plethora of different
comparisons. Here, the output of the ‘Counter1’ is compared with a
constant number to determine if the preamble or the encoded message bits
should be transmitted. Whenever the ‘Counter1’ is less or equal to 7, the
preamble is transmitted, otherwise the encoded sequence is selected.

Key parameters:
Comparison: a>b.

• Delay1, Delay2, Delay4 : delays that had been used for synchronization
troubleshooting purposes. Their actual value is set to zero and do not
affect the design as discussed in Section C.1 in Chapter V.

 69

C. DATA INPUT SUBSYSTEM

Or Time Division Multiplexer

read enable
4

encoded seq
3

TX ready
2

data _seq
1

To Workspace1 pre_Viterbi _encoder

To Workspace

After Encoder

T3 T1 T

Scope 1

Parallel to Serial

p s

Inverter

not

Gateway Out 1

 Out

FIFO

di
n w
e re rs
t

do
ut

em
pt

y

%
fu

ll

f u
ll

Delay 7 z- 12

Delay 1
z-2

Convolutional Encoder v 6_0

din

vin

rst

dout 0

dout 1

vout

Constant 2

1

Constant 1 1

Concat

hi

lo

reset

3

data _in

2

read _enable1

UFix _1_0
Bool

UFix _1_0
UFix _1_0

Bool

UFix _2_0
UFix _1_0

Bool UFix_1_1Booldouble

Bool

Bool

Bool

double

double
double

Bool

Figure 30 Data Input Subsystem.

• Convolutional Encode r v6_0 : is an encoder that uses a convolutional
code. The decoder that matches the convolutional encoder is the Viterbi
decoder. Encoders are provided by Xilinx as free to use IP blocks,
although it is not the same with the decoders. In digital communications,
encoding is used for forward error correction. In this design, the encoding
is applied to the whole message sequence, and not in a per packet basis. A

generic diagram of a rate 1
2

r = code is provided in Figure 31 to grant

some further insight and a more detailed description is provided in Section
B, Chapter II.

Figure 31 A block diagram of a convolutional encoder. (From: [13]).

 70

Key parameters:
Constraint length: 3. This means that the shift register of the encoder has
two flip-flops.
Convolutional code array (octal): [7 5]. This code is the one proposed by
Xilinx for this specific constraint length. This code means that the first
output branch of the convolutional encoder (data_out_v(0) in Figure 31) is
adding modulo 2 the values stored in all flip-flops and the input value
(111b), and the second branch(data_out_v(1) in Figure 31) is using only
the values of the last flip-flop to the right and the input value (101b).

• Concat: this block concatenates the two inputs into one word. The
ultimate goal using this block is to multiplex the two output streams of
convolutional encoder into one stream.

• Parallel to Serial : This block complete the time division multiplexing
started by ‘Concat’ block. Every word at the input is broken into separate
bits and is sent serially to the output.

Key parameters:
Output order: Most significant word first
Type (Output Precision): Unsigned
Number of bits: 1
Note: Both the ‘Concat’ and ‘Parallel to Serial’ blocks could have been
replaced by a ‘Time Division Multiplexer’ block where no extra
parameters are needed, except the number of inputs.

• Gateway Out1 : It converts the Xilinx fixed point input to a Simulink
compatible type. It drives the ‘Scope1’ and ‘To Workspace1’ blocks.

Key parameters:
Translate into output port: Disable. This block is not an instance of an
output port. An output pin is not assigned to this port during synthesis.

• To Worksp ace1: Stores the values presented at its input as a Matlab
variable for further analysis in the Matlab Environment. In this case, the
data represents the message sequence and will be used to compare the
receiver’s output and count the number of errors.

Key parameters:
Variable name: pre_Viterbi_encoder.

• Delay7, Delay1 : Delay used to align the plots in the ‘Scope1.’ As is the
case with many delays that drive Scopes, this is not a proper way to
implement a delay (see: ‘Delay1’ in Figure 28 description in Appendix B).

• FIFO: It is a First In First Out memory queue. The input values engage
next available memory location in the memory queue. This function is
permitted whenever write enable (we) signal is high, otherwise the input
data are discarded. In this case, ‘we’ is always high (‘Constant1’) allowing
the encoded message bits to be saved in the memory, even while the
preamble sequence is transmitted. Read enable (re) signal is defined by the
Preamble Subsystem and it is high for the time that the preamble is not

 71

transmitted. This allows the encoded bits to appear to the input of the
Modulation Subsystem. Outputs ‘%full’ and ‘full’ are not used and are
terminated by ‘T1,’’T’ blocks. ‘Empty’ signal had not been possible to be
used (see also Troubleshooting of the Transmitter in Chapter V) and is
terminated just outside the Data Input Subsystem.

• Constant1: Constant of value 1 that keeps the ‘we’ signal of ‘FIFO’
always high.

• Inverter: bitwise negation the Boolean value of its input.

D. MODULATION SUBSYSTEM

if 0 select the frequency
of input d 0, else choose

frequency of input d 1

Only to avoid some
undefined inputs during the

 initialization time .

State_machine : Waits for the first 1 of the preamble in order to enable the mux .

Frequency for
symbol 0

Frequency for
symbol 1

modulated signal
1

Up Sample
↑2

Shift

X << 2
z-0

Scope 4

Mux

sel

d0

d1

en

 z-1

MCode 1

din
reset enablestate _machine

Delay 3

z-1

Delay 2

z-1

Delay 1

z-1

DDS Compiler v 2_0 1

en

rst
cos

DDS Compiler v 2_0

en

rst
cos

reset
3enable

2

channel bits
1

Fix_6_6

Fix_6_6

UFix _1_0

Fix _6_6

Fix _6_6

double

double

Bool

Bool

Bool Fix _6_4

Bool

Figure 32 Modulation Subsystem.

• Mux: same description as ‘Mux1’ in Figure 28 in Appendix B. Same
parameters.

• Delay1, Delay2, Delay3: Delays that ensure the timely propagation of the
signals. It is often necessary to insert delays between adjacent blocks.

• DDS Compiler v2_0 and DDS Compiler v2_0 1 : Direct Digital
Synthesizers (aka Numerical Controlled Oscillators) that produce a
sinusoidal output using a lookup table. One DDS is devoted to generate
the frequency assigned to 0 and the other is used for the generation of 1’s
frequency. The output width is by default 6 bits, all placed after the binary
point. Since the first bit is the sign bit, only 5 bits are for magnitude. This
means the output takes values from -0.5 to +0.5 and not from -1 to +1.

 72

Key parameters:
DDS clock rate (Mhz):100.0. This number must be at least twice the
output frequency and at most 500 for the Virtex-4 target FPGA. According
to Xilinx technical support email, the frequency of the DDS clock rate
should match the parameter ‘FPGA clock period (ns)’ in Sysgen token. In
this case FPGA clock period is 10ns, yielding a frequency of 100MHz.
Frequency resolution (Hz):0.03.
Output Function: Cosine
Output Frequency array (MHz): [45.0] for the 1s and [40.0] for the 0s.
These choices depend from the bit duration as well. The bit period of the
encoded bits is 64*10 ns. For the two frequencies to be orthogonal as
shown in Section A in Chapter II, their spacing must be a multiple of the
bit rate. In this case the spacing of 5MHz is 3.2 times the bit rate

8
. .

1R 10
64c b = and the frequencies are not orthogonal.

Explicit period: T/128. The decision made was to use 64 samples of the
sinusoid for every bit. Given that the bits at the entrance of the modulation
Subsystem are at a period of ½, then the signal that would have the proper
period is one with a value set to T/128.
Noise Shaping (Under Advanced tab): Phase dithering [77]. This choice
should improve the quality of the sinusoidal samples, minimizing the
quantization error.
DSP48 Use (Under Implementation Tab): Maximal. Given that DSP48
cells are not used anywhere else in the transmitter, some of them can be
sacrificed to increase the performance of this block.

• MCode1: This block is used to execute simple assigned Matlab functions.
The code is translated in VHDL or Verilog language during the synthesis
phase. It only supports a small subset of the MATLAB language. In cases
where this is a problem Xilinx AccelDSP Synthesis tool can be used to
support a larger set of Matlab commands and to create custom IP blocks.
MCode block only supports Xilinx fixed-point type.

The function assigned to this block has to do with the initialization of the ‘Mux’
block. In order to avoid the propagation of undefined signals during the initiation
phase, a state machine was written that delays the enable (en) of the ‘Mux’ block
until the first bit of the preamble is detected at the input of the Modulation
Subsystem.

Code:

function enable = state_machine(din,reset)

% define the state variables. They will be retained to memory between
% following runs.
persistent state, state = xl_state(0,{xlUnsigned, 1, 0});

switch state

 73

 case 0
 if din == 1 %when the fisrt bit of the preamble is detected
 state = 1; %go to the next state (enable high)
 else
 state = 0;
 end
 enable = xfix({xlBoolean},0); %xfix() translates values…
 %to a Xilinx fixed-point type.
 case 1
 if reset ==xfix({xlBoolean},1) %check synchronous reset
 state =0;
 enable = xfix({xlBoolean},0);
 else
 enable = xfix({xlBoolean},1); %otherwise stay locked to…
 %the same state (enable high)
 end
 otherwise
 state = 0;
 enable = xfix({xlBoolean},0);
end

• Up Sample: up samples input data by inserting zeros or copies of previous
sample. It is used to make the sample rate of the ‘din’ and ‘reset’ signals
compatible. System Generator does not accept a state machine with inputs
of different sampling periods.

Key parameters:
Copy samples: enabled.

• Shift: This block generally performs a left or right shift on the input. The
purpose of this block is to amplify the signal before transmission. It should
be noted that DDS blocks yield values from -0.5 to +0.5 and not from -1 to
+1.

Key parameters:
Shift direction: Left. This direction is amplifying the signal.
Number of bits (Shift direction): 2. This number is amplifying the signal
by a factor of four.
Number of bits (Output type):6. The total number of bits is not changing,
only the decimal point.
Binary point (Output type):4. The change of the position of the binary
point reflects the shift made by the block. The previous binary point
position of 6 has now changed to 4, meaning that the binary point shift is
two places to the right.

 74

E. RECEIVER (TOP LEVEL)

Non-Coherent BFSK receiver

forward path - matced filter
mixers

output to workspace
in order to check concistancy

with matlab code

correlator to feed the
state machine

variable delay for testing

correlator to feed the
state machine

To Workspace1

ysin

To Workspace 3

xsin

To Workspace 2

xcos

To Workspace

ycos

Sample Time 2

ST

Sample Time 1 ST

Resource
Estimator

Relational

a

b

en

a>b
z-1

NC Matced Filter for 1s

mixer sin input

write enable & rst

mixer cos input

Out

NC Matced Filter for 0s

mixer sin input

write enable &rst

mixer cos input

Out
Mult 3

a
b (ab)z- 3

Mult 2

a
b (ab)z- 3

Mult 1

a
b (ab)z- 3

Mult

a
b (ab)z- 3

Gateway Out

 O
ut

Gateway In
 In

From
Workspace.signals .values))*t; [simout

Display 2

1

Display 1

64

Delay 2
z-98

Delay 1z-8

Decode Subsystem

preambe end

channel bits

Out1

Decision Circuit

correlation value for 1s

correlation value for 0s

reset ACCU & we FIFOs

preamble end

DDS Compiler v 2
 for 1s

sin
cos

DDS Compiler v 2
 for 0s

sin
cos

Constant 21

1's Correlator

sin input

cos input
correlation value for 1s

0's Correlator

sin input

cos input
correlation value for 0s

System
Generator

Fix _6_4

Fix _6_6

Fix _6_6

Fix _6_6

Fix_12_10

Fix_12_10

Fix_12_10

Fix _6_6

Fix_12_10

double

Bool

Bool

UFix _32_10

Fix _6_4

UFix_32_10 Bool

Bool

Bool

double

UFix _32_10

UFix_32_10

double

double

Figure 33 Receiver’s schematic diagram designed in Simulink/Sysgen environment.

• System Generator: its existence is compulsory to every design. It defines
the type of target FPGA, the FPGA clock period, and other key
parameters.

Key parameters:
Part: Virtex4 xc4vlx25-10sf363.This is the target FPGA.
FPGA clock period (ns):10.
Clock pin location: A8. This choice depends from the actual pin that the
mainboard provide the clock pulses and it is found in the board’s manual.
This parameter is crucial for proper function of the design on the FPGA
and post place and route simulation is not fisible if this parameter is not
defined.
Simulink system period (sec):t, where 910 10t −= i defined in the Matlab
Workspace. In contrast to the same block of the Transmitter, here the input
is samples, not bits, which is the same as the fastest blocks in this design.
Given that the time step of the Simulink simulation is t, one Simulink
simulation period is equal to the reference period of the Xilinx model.

 75

• Resource Estimator: It is a block that provides an estimate regarding the
FPGA resources that are required to build the circuit.

• From Workspace: inserts variables from Workspace. Here, this variable
is the stored output values of the Transmitter.

Key parameters:
Data: [(1:length(simout.signals.values))*t; [simout.signals.values]']' where
simout.signals.values represents the output samples of the Transmitter.

• Gateway In: converts the input to Xilinx fixed point type. The part of the
design that is after this block is synthesized by System Generator. The
block itself becomes a top level input port.

Key parameters:
Output type: Signed consisting of six bits with the binary point at the
fourth position (from the left). The input is cosine samples amplified by a
factor of four. This should match the output type of the Transmitter.
Sample period: t. The block is working at the Simulink’s simulation period
and at the reference period as well.

• DDS Compiler v2 for 1s and DDS Compiler v2 for 0s : Direct Digital
Synthesizers (aka Numerical Controlled Oscillators) that produce a
sinusoidal output using a lookup table. One DDS is devoted to generate
the frequency assigned to 0 and the other is used for the generation of the
1’s frequency. The output width is by default 6 bits, all placed after the
binary point. Since the first bit is the sign bit, only 5 bits are for
magnitude. This means the output takes values from -0.5 to +0.5 and not
from -1 to +1.

Key parameters:
DDS clock rate (Mhz):100.0. This number must be at least twice the
output frequency and at most 500 for the Virtex4 target FPGA. Here, the
value matches the respective value of the transmitter.
Frequency resolution (Hz):0.03.
Output Function: Cosine
Output Frequency array (MHz): [45.0] for the 1s and [40.0] for the 0s.
These choices should match the values defined in the Transmitter.
Explicit period: t. The block is working at the Simulink simulation period
and at the reference period as well.
Noise Shaping (Under Advanced tab): Phase dithering. This choice should
improve the quality of the sinusoidal samples, minimizing the quantization
error.
DSP48 Use (Under Implementation Tab): Maximal. Given that DSP48
cells are not used anywhere else in the receiver, some of them can be
sacrificed to increase the performance of this block.

 76

• Mult, Mult1, Mult2, Mult3 : This block multiplies its two inputs. It
should be noted that because the input from ‘Gateway In’ takes values
from -2 to +2 and the input from DDS is from -0.5 to +0.5, the output is
between 1± .

Key parameters:
Precision: full.
Use embedded multipliers (Implementation): Enabled. This choice will
make use of the DSP48 embedded cells to execute the operation faster. It
also releases generic cells that can be used for a different purpose.

• Relational: is a comparator that can support a plethora of different
comparisons. Here, it compares the output of the two filters. When the
output of the Non-Coherent Matched Filter for 1s is higher than the output
of the Non-Coherent Matched Filter for 0s, then the decision is that 1 was
transmitted.

Key parameters:
Comparison: a>b.
Provide enable port: enabled.
Latency: 1. Whenever the enable input is chosen, the latency must be one
or more.

• Constant2: Provides the enable signal to Relational.

• Delay1: delay measured exactly to overcome initialization problems.
Before the propagation of Constant2, the output of the delay is zero.

• Gateway Out : It converts the Xilinx fixed point input to a Simulink
compatible type. These blocks are synthesized in top level output ports.

F. MATCHED FILTER SUBSYSTEM

buffersinstead of integrators

Out
1

T5
T4

T 3
T2

T1

T

Mult 5

a
b (ab)z- 3

Mult 4

a
b (ab)z-3

FIFO 3

din

we

re

dout
empty
%full

full

FIFO 2

din

we

re

dout
empty
%full

full

Down Sample 5

↓64
z-1

Down Sample 2

↓64
z-1

Delay 6

z-1

Delay 16

z-6

Delay 15

z-6

Delay 12

z-1

Delay 11

z-1

1

AddSub

a

b
a + b

Accumulator 1

b

rst
q

Accumulator

b

rst
q

mixer cos input
3

write enable & rst2

mixer sin input

1

Fix _20_10

Fix _20_10

UFix_31_10

UFix _31_10

Fix_20_10

Fix_20_10Fix _20_10 UFix _31_10

Fix _20_10 UFix_31_10

UFix _32_10Bool

Bool

Bool

Bool

UFix _32_10

Bool

UFix _1_1

Bool

UFix _1_1

Fix_12_10
Fix_20_10

Fix_20_10
Fix_12_10

Figure 34 NC Matched filter subsystem (one of two).

 77

• Accumulator, Accumulator1 : Implement the integration concept in the
discrete case. The integration must be over one bit period, thus 64
consecutive samples from the mixers must be added. After 64 samples, a
reset signal is expected to restart the same process for the next bit. The
reset must be synchronized with the beginning of every bit.

Key parameters:
Operation: add.
Output precision: 20 bits. Given that each input from the mixers cannot
exceed a value of 1 and the adder adds 64 samples and assuming all values
with the same sign, the sum cannot exceed 64. This value corresponds to 6
bits for the integer part plus one for the sign. Given that the binary point is
inferred from the input and is placed at the 10 position, the output should
be at most 17 bits wide. Some extra bits are given.

• FIFO2, FIFO3: description of the block as in Figure 31. The FIFOs here
are used as a convenient way to capture the value of the accumulators just
before the reset. A simple register with an enable port should be sufficient
to yield the same result. Read enable (re) is always high.

• Delay6, Delay11, Delay12, Delay15, Delay16 : Delays that ensure the
timely propagation of the signals.

• Down Sample 2, Down Sample 5: This block reduces the sample rate of
the input, discarding the extra values provided in the highe r rate input.
The capture of the output value of the accumulator by the FIFOs is made
once per sixty-four sample periods. Given that this value is changing once
per bit period (sixty-four sample periods) there is no need for the blocks
after the FIFOs to run at sample period.
Key parameters:
Sampling rate (number of input samples per output sample): 64*t.
Switching from samPle period to bit period.
Sample: Last value of the frame. This choice was made due to less
hardware needed for its implementation. This choice introduces at least
one latency.

• Mult4, Mu lt5: This block multiplies its two inputs. In this case the
multiplication simulates the squaring operation by providing the same
signal to both inputs of the block.

Key parameters:
Output type: Unsigned 31 bits with binary point at the tenth position. The
multiplication may double the bits of the integer part. Given that six bits
were calculated to be sufficient for the integer part after the accumulators,
twelve bits are now needed for a total of 23 bits with the sign. Some extra
bits are offered.

• AddSub: This block implements the addition or subtraction operation. In
this case, the addition of the two branches must be made.

 78

G. CORRE LATOR’S SUBSYSTEM

correlation value for 1s

1

Mult 9

a
b (ab)z-3

Mult 8

a
b (ab)z-3

Initializaton
 block

reset out

FIR filter 1

reset in

cos input
Out1

FIR filter

reset in

sin input
Out1

Delay 6

z-1

Delay 1

z-1

AddSub 4

a

b
a + b

cos input
2

sin input
1

Fix_20_10 UFix _31_10

Fix_20_10 UFix _31_10

Fix_12_10

Fix_12_10

UFix_32_10

Fix _20_10

Bool

Fix _20_10

Figure 35 Correlator’s Subsystem (one of two).

• Initialization block : This is a custom block that resets the FIR filters at
the beginning of the simulation and does not affect the circuit anymore.
This need appeared after switching from the Xilinx FIR compiler block to
the custom ‘FIR filter’ block, where the message for the propagation of
indeterminate values appeared. It consists of a constant, a delayed constant
and a comparator as shown in Figure 36. The ‘Relational’ finds input a
higher than input b only at the first cycle of the simulation and at that
instance sends a reset signal to the ‘FIR filter’ and ‘FIR filter 1.’ After the
first cycle, the delayed ‘Constant2’ render to input ‘b’ a value that is equal
to input ‘a’ of the ‘Relational,’ forcing ‘reset out’ to go low. It should be
noticed that all constants are explicitly sampled in 64*t.

Figure 36 Initialization block.

• FIR filter, FIR filter1 : custom blocks that have the functionality of an
accumulator that adds the last 64 values of its input. A detailed description
is given in Section C.2 in Chapter V.

• Delay1, Delay6 : see description of blocks ‘Delay6, Delay11, Delay12,
Delay15, Delay16’ of Figure 34.

 79

• Mult8, Mult9: see description of blocks ‘Mult4, Mult5’ of Figure 34.

• AddSub4: see description of block ‘AddSub’ of Figure 34.

Key parameters:
Precision (Output Type): Full.

H. DECISION CIRCUIT

feedback circuit :
part of logic that
yields the timing .

the state _machine tries to verify when
all the preamble had been detected

in order to extract timing info .
After a succesful detection , it wait for the rest

bits of the packet and starts again .

output to the
accumulators & FIFOs
 of the matched filter .

used to count #
of samples that

are added inside
the accumulators .

performs the
modulo 64 operation

preamble end 2
reset ACCU
& we FIFOs1

Slice

[a:b]

Scope 3

Relational 1

a ba=b
z-1

Register

d

en
q z-1

MCode 0

d dipre

MCode

din

tin

total _sync

sync

tsync

reset_counter

state _receiver

Display 3 1
Delay 9

z-64

Delay 5
z- 2 Delay 10

z-1

Delay 1 z-80

Counter 3

out

Counter

ou
t

Convert 1

cast
Constant 7

23

Constant 2 1

AddSub 3
a
ba + bz-1

AddSub 2

a
b
en

a - bz-1

correlation value for 0s
2

correlation value for 1s
1

Bool

Bool

UFix _18_0

UFix_6_0

double

UFix _6_0

UFix _18_0

Bool
Bool

UFix _6_0

Fix_32_10

double

UFix _6_0

UFix_18_0

UFix _32_10

UFix _32_10

Bool

Bool

Bool

double
Fix_32_10

Figure 37 Decision Circuit.

• AddSub2: block implements the addition or subtraction operation. In this
case, the outputs of the correlators are subtracted. In contrast with the
‘Relational’ block in Figure 33, not only the highest value, but also the
exact value is needed. The result is supplied to the following ‘MCode’ to
make decisions about the timing.

Key parameters:
Output type: 32 bits with the Binary point in the tenth position. No extra
width is granted compared to the previous block.

• Constant2, Delay1: Delayed Enable to correct initialization problems.

Key parameters:
Explicit period: t. This block and the blocks in the specific subsystem are
running at the sample rate.

• Counter3: A counter should be thought of as a clock with an adder. Its
output can be usually used by comparators to enable or disable signals. In
this case, ‘MCode’ is using the counter to time stamp incidents of interest.

 80

Key parameters:
Counter type: Free Running. As the relative occurrence of the incidents is
of interest, any reset in the middle of a preamble acquisition would destroy
the synchronization process. A reset implemented in such a way as not to
disturb this acquisition is highly recommended.
Output type: Unsigned with 18 bits. A long width was chosen to
accommodate the concept of a free running counter and to make any
restart unlike.

• Explicit period: t. This block and the blocks in the specific subsystem are
running at the sample rate. The result of the subtraction of the Correlators’
output is examined at the sample rate.

• MCode0: see description of block ‘MCode1’ of Figure 32. Here,
‘MCode0’ is used to apply some countermeasure against noise. A typical
maximum for the input waveform is at a value around 700. This block
makes every input value that does not exceed a threshold equal to zero. In
this way, small amount of noise will not be perceived as signal by the
timing circuit, trying to lock at random noise values. Due to the fact that
only positive values can trigger a synchronization phase, only the positive
values are suppressed.

Code:

function [di] = pre(d)

if d<50 && d>0 %if the value of d does not exceed threshold...
 di =0; %...suppress output
else
 di =d; %...otherwise, let input pass.
End

• MCode: see description of block ‘MCode1’ of Figure 32. Here, ‘MCode’
incorporates the logic behind the bit synchronization. It also implements
the granular packet synchronization. It includes a state machine where
each state represents the next bit of the preamble expected to be received.
Explicitly, the zero state is waiting for a reception of a 1, which is the first
bit of the preamble. The state one is trying to identify a 0, which is the
second bit of the preamble and so on. The state machine goes up to the
fifth bit of the preamble and after that it locks the extracted
synchronization timing value.

The input waveform is maximized at the exact moment that all 64 samples
of a 1 have been accounted for by the accumulator of the Correlator
subsystem. The opposite holds for the 0s, where the waveform is
minimized. The ‘MCode’ tries to match these maxima and minima to the
preamble pattern. These maxima and minima also imply the end of a bit.
The time that these occur help achieve the synchronization of the receiver.

 81

The decision of the final timing of each packet is based on the mean value
of the time of the third and fourth bit. This can change to include more
bits.

Code:

function [total_sync, sync, tsync, reset_counter] =
state_receiver(din,tin)

persistent state, state = xl_state(0,{xlUnsigned, 3, 0});
persistent min, min = xl_state(0,{xlSigned, 32, 10});
persistent max, max = xl_state(0,{xlSigned, 32, 10});
persistent tsync1, tsync1 = xl_state(0,{xlUnsigned, 18, 0}); %to store
 % time stamp of the acquisition of the first bit of the preamble
persistent tsync2, tsync2 = xl_state(0,{xlUnsigned, 18, 0});
persistent tsync3, tsync3 = xl_state(0,{xlUnsigned, 18, 0});
persistent tsync4, tsync4 = xl_state(0,{xlUnsigned, 18, 0});
persistent tsync5, tsync5 = xl_state(0,{xlUnsigned, 18, 0});

switch state
 case 0 %Search for the first bit of the preamble.
 if (tin-tsync1)<64 %For each max value found, search next 64
 %inputs to ensure no other maximum occurs.
 if din >=max %If other maximum found, store it...
 max =din;
 tsync1 =tin; %...and wait again 64 samples to verify
 min =max; %this is the only maximum for the time.
 tsync2 =tin;
 else
 if din <min %Otherwise see if it is minimum to
 min =din; %initialize correctly state 1.
 tsync2 =tin;
 end
 end
 state =0;
 sync = 0;
 tsync =0;
 else %When no other maximum found in the given...
 state =1; %...time frame, go to next state.
 sync = 1; %sync high means that this tsync is going
 %actually to be used to extract timing
 %information. Otherwise the value of tsync
 %is ignored.
 tsync =tsync1; %Give tsync to output.
 max =min;
 end
 total_sync =xfix({xlBoolean},0); %Enabled when the fifth bit of
 %the preamble is located
 reset_counter =xfix({xlBoolean},0); %Not allow reset for the
 %external counter (not used)
 case 1 %Search for the second bit of the preamble.
 if (tin-tsync2)<64 %For each min value found, search next 64
 %inputs to ensure no other minimum occurs.
 if din <=min %If other minimum found, store it...
 min =din;

 82

 tsync2 =tin;
 max =min;
 tsync3 =tin;
 else
 if din >max %Otherwise see if it is maximum to
 max =din; %initialize correctly state 2.
 tsync3 =tin;
 end
 end
 state =1;
 sync = 0;
 tsync =tsync1;
 else %When no other maximum found in the given...
 state =2; %...time frame, go to next state.
 sync = 0; %sync low means that this tsync is not going
 %to be used to extract timing information and
 %tsync will be ignored.
 tsync =tsync2;%Give tsync to output.
 min =max;
 end
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);
 case 2 %Search for the third bit of the preamble.
 if (tin-tsync3)<64 %and go through the procedure of state 0
 if din >=max
 max =din;
 tsync3 =tin;
 min =max;
 tsync4 =tin;
 else
 if din <min
 min =din;
 tsync4 =tin;
 end
 end
 state =2;
 sync = 0;
 tsync =tsync2;
 else
 sync = 1;
 state =3;
 tsync =tsync3;
 max =min;
 end
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);
 case 3 %Search for the forth bit of the preamble.
 if (tin-tsync4)<64 %and go through the procedure of state 1
 if din <=min
 min =din;
 tsync4 =tin;
 max =min;
 tsync5 =tin;
 else
 if din >max

 83

 max =din;
 tsync5 =tin;
 end
 end
 state =3;
 sync = 0;
 tsync =tsync3;
 else
 sync = 1;
 state =4;

 tsync =xfix({xlUnsigned, 18, 0},(tsync3+tsync4)/2); % This

% criteria was chosen. Different combinations of averaging
% are also possible.

 min =max;
 end
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);
 case 4 %Search for the fifth bit of the preamble.
 if (tin-tsync5)<64 %and go through the procedure of state 0
 if din >=max
 max =din;
 tsync5 =tin;
 %no reset for the next step
 %else
 %no store of min for the next step
 end
 state =4;
 sync = 0;
 tsync =xfix({xlUnsigned, 18, 0},(tsync3+tsync4)/2); % This

 % criteria was chosen. Different combinations of averaging
 % are also possible.

 else
 sync = 0;
 state =5;
 tsync =tsync5;
 max = min;
 end
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);
 case 5 %Stay locked waiting for the whole packet
 %to finish.
 if (tin-tsync5)< 7872-12%The time to complete the reception of
 %128 bits given that tsync5 corresponds
 %to the 5th bit of the packet.
 total_sync =xfix({xlBoolean},1); %The preamble (up to fifth
 %bit)has been successfully
 %located.
 state =5;
 sync =0; %Lock the timing information.
 reset_counter =xfix({xlBoolean},0);
 else %Preparation to start over.
 if (tin-tsync5)< 7872+56
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);

 84

 state =5;
 sync =0;
 else %Start over with the following parameters:
 reset_counter =xfix({xlBoolean},1);
 state =0;
 total_sync =xfix({xlBoolean},0);
 sync = 0;
 max =0;
 min =0;
 end
 end
 tsync =tsync5;
 tsync1 =tin;
 otherwise %escape state from unexpected condition.
 state = 0;
 sync = 0;
 tsync =0;
 total_sync =xfix({xlBoolean},0);
 reset_counter =xfix({xlBoolean},0);
end

• Delay9: see description of blocks ‘Delay7, Delay1’ of Figure 30.

• AddSub3, Constant7 : There is an inherent delay between the
unprocessed samples at the input of the Correlators and the point where
the timing decision is taken. To offset this fact a constant value is added to
the synchronization time that has been calculated by ‘MCode.’ The exact
value of ‘Constant7’ is calculated experimentally.

Key parameters:
Operation: addition.
Constant value: 23. Experimentally calculated value.

• Slice: This block extracts from the input only a specified portion of the
word and presents it to the output. The operation implemented here is
modulo 64. The remainder of the input value when divided by 64 is the six
least significant bits. The timing information is supplied to a counter that
counts up to 63. This is the reason that the absolute timing information
must be translated to time modulo 64.

Key parameters:
Width of slice (number of bits): 6.
Specify range as: Lower bit location +width.
Relative to: LSB of input.

• Delay 5 : Delays that ensure the timely propagation of the signals. It is
common practice to have to insert delays between adjacent blocks.

• Delay 10: delay that had been used for synchronization purposes.

 85

• Convert1: Translate the input to a desired output type. Enable and reset
inputs can only be driven by Boolean signals. In this case ‘sunc’ signal is
unsigned one bit integer and must be converted to Boolean. This block
may not even require resources when mapped to the FPGA, depending on
some parameters chosen.

Key parameters:
Type (Output precision): Boolean.

• Register: is a D flip-flop with latency equal to one sample period. It
provides an optional enabled port. When this port is used the register does
not accept any new value from its input and continues to have the same
output.

Key parameters:
Optional Ports: Provide enable port. Here the enable is the ‘sync’ output of
the ‘MCode’ which means that a desired bit of the preamble has been
detected.

• Counter: A counter should be thought of as a clock with an adder. Its
output can be usually used by comparators to enable or disable signals. In
this case, the counter defines a 64 time cycle, within which the
accumulators of the NC Matched Filter subsystems must be reset exactly
once. The specific instance of the reset is defined by the value stored to
the ‘Register’ and the reset signal is created by the comparison of the
value of the counter with the value of the output of the ‘Register.’

Key parameters:
Counter type: Count Limited.
Count to value: 63. This defines the 64 time cycle.
Number of bits: 6. To accommodate counting up to 63.
Explicit period: 1. As the other components in this subsystem, the
‘Counter’ works at the sample rate.

• Relational1: is a comparator that can support a plethora of different
comparisons. Here the comparison is made between the ‘Counter’ and the
output of the ‘Register’ to define at which exact time instance the
accumulators of the NC Matched Filter subsystems must be reset.

 86

I. DECODING SUBSYSTEM

circuit that pevents
the preamble to

appear at the output

Out1
1

Viterbi Decoder v 6_0

din 1
din 2
vin

dout

vout

To Workspace1

after decoder

To Workspace

pr
e

de
co

de
r

Time Division
Demultiplexer

d
q0
q1

TDD

T3

T2
T 1

T

Scope 2
Scope 1

Sample Time 2

ST

MCode

clock

prbl _end

input _bit

wepreamble_detacher

FIFO 4

din

we

re

dout
empty
%full

full

Down Sample

↓64
z-1

Display 2

128

Delay 4z-100

Delay 20

z-6

Delay 19z-5

Counter 1

ou
t

Convert

cast

Constant 51

Constant1

channel bits
2

preambe end1

Bool double

Bool

double

Bool

Bool

Bool

Bool

UFix _1_1

Bool

double

UFix_16_0

BoolBool

Bool
Bool

double

doubleUFix_1_0

UFix_1_0

Figure 38 Decoding Subsystem.

• Delay19, Delay20 : Delays that had been used for synchronization
purposes, to synchronize ‘preamble end’ and ‘channel bits’ signals. Their
values were found experimentally.

Key parameters:
Latency: 5 and 6, respectively.

• Down Sample: This block reduces the sample rate of the input, discarding
the extra values provided in the higher rate input. Here, it matches the
sampling rate of ‘preamble end’ signal with that of ‘channel bits.’

• Counter1: see description of block ‘Counter3’ of Figure 37. The only
different key parameter is the following:

Key parameters:
Explicit period: 64*t. This block and the blocks in the specific subsystem
are running at the bit rate. All input signals have been downsampled by a
factor of 64.

• MCode: see description of block ‘MCode1’ of Figure 32. Here, ‘MCode’
makes the fine tuning of the packet synchronization. After receiving
‘preamble end’ high from the ‘Timing Circuit,’ it checks the input bits to
locate the first 1. This should be the last bit of the preamble.

 87

Code:

function we = preamble_detacher(clock,prbl_end,input_bit)

persistent state, state = xl_state(0,{xlUnsigned, 1, 0});
persistent counter, counter = xl_state(0,{xlUnsigned, 16, 0});
persistent delay, delay = xl_state(0,{xlBoolean});

switch state
 case 0 %Wait state.
 if prbl_end == xfix({xlBoolean},1);%When timing circuit locates
 %the 5th bit of the preamble,
 if delay ==xfix({xlBoolean},0) %let one cycle to pass
 delay =xfix({xlBoolean},1);
 else
 if input_bit == 1 %and search for an input bit =1
 state = 1; %to go to the next state.
 counter =clock;
 else
 state =0; %While to find stay at the
 end %current state...
 end
 else
 state = 0;
 counter =0;
 end
 we = xfix({xlBoolean},0); %and output write enable low.
 case 1 %Packet under reception.
 if clock-counter <120 %Until it counts 120 bits,
 state = 1; %stay in the current state.
 else
 if prbl_end == xfix({xlBoolean},1);% Verify that 'preamble
 %end' signal when low
 state =1;
 else
 state = 0; %and go to the wait state’
 counter =0;
 delay =xfix({xlBoolean},0); %resetting the flag.
 end
 end
 we = true;
 otherwise %escape state from unexpected condition.
 state = 0;
 we = xfix({xlBoolean},1);
 delay =xfix({xlBoolean},0);
end

• Convert: Translate the input to a desired output type. The output of the
‘Relational’ block is Boolean and must be translated to an unsigned one
bit integer in order to drive the next blocks.

• FIFO4: It is a First In First Out memory queue. The input values engage
the next available memory location in the memory queue. This function is
permitted whenever the write enable (we) signal is high; otherwise, the
input data is discarded. In this case, ‘we’ is driven by the ‘we’ output of

 88

‘MCode.’ The read enable (re) signal is a delayed high. This allows the
encoded bits to appear at the input of the Modulation Subsystem. Outputs
‘empty,’ ‘%full’ and ‘full’ are not used and are terminated by ‘T,’‘T 1,’‘T
2’ blocks.

Key parameters:
Depth: 256.

• Constant5, Dealy4: The input sequence of bits is stored but it is read with
delay in order to accommodate the preamble bits that are screened from
the stored sequence. For a larger number of received packets, the value of
‘Delay4’ should be increased. Any failure of the delay to account for all
the preambles taken away will distort the output sequence by creating
copies of the previous bit to the output in order to fulfill the time gaps.
Another solution would be to place the decoder with an enable at that
point. The enable could be driven by the write enable (we) output of
‘MCode’ and whenever it was low, it would freeze the Viterbi Decoder
until the next enable high.

Key parameters:
Constant value: 1.
Delay value (Latency): 100. This number could be lower for fewer
received packets or higher for more received packets.

• T, T1, T2, T3 : terminate their inputs to avoid warning messages. This
means that their inputs are not useful in this design.

• Time Division Demultiplexer : This block breaks the input stream to
multiple output streams according to the sampling pattern specified. The
outputs are downsampled compared to the input.

Key parameters:
Frame sampling pattern: [1 1]. Every second input bit is presented to the
same output.
Implementation: Multiple Channel.

• Viterbi Decoder v 6_0 : This decoder decodes convolutionally encoded
data. The block has a green color to emphasize the fact that an extra
license is needed to use it. For the purpose of this project, a 90 days free
license was granted by the online site of Xilinx. The same parameters used
in the Convolutional Encoder block must be specified here as well. Extra
capabilities like soft decision decoding and puncturing are offered but
were not used.

Key parameters:
Constraint length: 3.
Convolutional code array 1 (octal):[7 5].
Coding: Hard

 89

• Constant: Drives the ‘vin’ of ‘Viterbi Decoder v6_0’ always high.

• Sample Time2, Display2 : See description of block ‘Sample Time1’ of
Figure 28

• To Workspace, To Workspace1 : see description of block ‘Workspace1’
of Figure 30. These are custom blocks to include both ‘Gateway Out’ and
‘To Workspace’ to fit easier in the design.

Key parameters:
Variable name: pre_Viterbi_decoder, after_Viterbi_decoder, respectively.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

APPENDIX C. MATLAB VERIFICATION CODE

The Matlab code written to verify the decision signal shown in ‘Scope3’ of Figure

37 as the input of the ‘MCode’ block is given in this chapter. The decision circuit is the

most critical part of the receiver, thus, a reproduction of the simulation results of the

Sysgen was important. This code helped locate the problem related to the Digital Discrete

Synthesizers mentioned in Section B.2, Chapter V.
clear din
tstep =10*10^-9; %define the simulation step.
simulation_length =300000; %define the length of the simulation.
f1 =45*10^6;
f2 =40*10^6;
time =0:tstep:simulation_length*tstep;
input =simout.signals.values(1:simulation_length+1)';
h =ones(1,64);
x_sin =input.*(.5*sin(2*pi*f1*time));
x_cos =input.*(.5*cos(2*pi*f1*time));
% x_sin =[xsin.signals.values];% In case the output of the Sysgen ...
% x_cos =[xcos.signals.values];% after the mixers is used.
x_branch =conv(x_sin,h).^2+conv(x_cos,h).^2;

y_sin =input.*(.5*sin(2*pi*f2*time));
y_cos =input.*(.5*cos(2*pi*f2*time));
% y_sin =[ysin.signals.values];% In case the output of the Sysgen ...
% y_cos =[ycos.signals.values];% after the mixers is used.
y_branch =conv(y_sin,h).^2+conv(y_cos,h).^2;
din =x_branch-y_branch;
din = (din>50 | din<0).*din;
din =[zeros(75,1); din']; %insert a small delay to match the Sysgen
output.
%din =[zeros(108,1); din'];
figure(1)
subplot(2,1,1),plot(din)
title('Decision Signal ')
xlabel('time(sec)')
ylabel('amplitude')
xlim([0 simulation_length])
state =0;
max =0;min =0;tsync_plot =0;
k =0;%point counter of tsync
kk =0;%point counter of tsync_plot
tsync1 =150;tsync2 =150;tsync3 =150;tsync4 =150;tsync5 =150;%Initialize
tsync =zeros(1,6);
for tin =181:length(din)
switch state
 case 0 % Search for the first bit of the preamble.
 if (tin-tsync1)<64%For each max value found, search next 64
 %inputs to ensure no other maximum occurs.
 if din(tin) >=max%If other maximum found, store it...

 92

 max =din(tin);
 tsync1 =tin;%...and wait again 64 samples to verify
 min =max; %this is the only maximum for the time.
 tsync2 =tin;
 else
 if din(tin) <min%Otherwise see if it is minimum to
 min =din(tin);%initialize correctly state 1.
 tsync2 =tin;
 end
 end
 state =0;
 sync = 0;
 tsync(1+k) =0;
 else%When no other maximum found in the given...
 state =1;%...time frame, go to next state.
 sync = 1;%sync high means that this tsync is going
 %actually to be used to extract timing
 %information. Otherwise the value of tsync is
 %ignored.
 tsync_plot(1+kk) =tsync1;
 tsync(1+k) =tsync1; %Give tsync to output.
 max =min;
 end
 total_sync =0;%Enabled when the fifth bit of the
 %preamble is located
 case 1%Search for the second bit of the preamble.
 if (tin-tsync2)<64%For each min value found, search next 64
 %inputs to ensure no other minimum occurs.
 if din(tin) <=min%If other minimum found, store it...
 min =din(tin);
 tsync2 =tin;
 max =min;
 tsync3 =tin;
 else
 if din(tin) >max%Otherwise see if it is maximum to
 max =din(tin);%initialize correctly state 2.
 tsync3 =tin;
 end
 end
 state =1;
 sync = 0;
 tsync(2+k) =tsync1;
 else %When no other maximum found in the given...
 state =2;%...time frame, go to next state.
 sync = 1;%sync high means that this tsync is going
 %actually to be used to extract timing
 %information. Otherwise the value of tsync is
 %ignored.
 tsync_plot(2+kk) =tsync2;
 tsync(2+k) =tsync2;%Give tsync to output.
 min =max;
 end
 total_sync =0;
 case 2%Search for the third bit of the preamble.
 if (tin-tsync3)<64%and go through the procedure of state 0

 93

 if din(tin) >=max
 max =din(tin);
 tsync3 =tin;
 min =max;
 tsync4 =tin;
 else
 if din(tin) <min
 min =din(tin);
 tsync4 =tin;
 end
 end
 state =2;
 sync = 0;
 tsync(3+k) =tsync2;
 else
 sync = 1;%sync low means that this tsync is not going
 %to be used to extract timing information and
 %tsync will be ignored.
 tsync_plot(3+kk) =tsync3;
 state =3;
 tsync(3+k) =tsync3;
 max =min;
 end
 total_sync =0;
 case 3%Search for the forth bit of the preamble.
 if (tin-tsync4)<64%and go through the procedure of state 1
 if din(tin) <=min
 min =din(tin);
 tsync4 =tin;
 max =min;
 tsync5 =tin;
 else
 if din(tin) >max
 max =din(tin);
 tsync5 =tin;
 end
 end
 state =3;
 sync = 0;
 tsync(4+k) =tsync3;
 else
 sync = 1;
 state =4;
 %Choose a criterion for timing
 tsync_plot(4+kk) =tsync4; % Store time that the decision is
 % taken
 tsync(4+k) =(tsync4+tsync1)/2; % Timing decision
 min =max;
 end
 total_sync =0;
 case 4%Search for the fifth bit of the preamble.
 if (tin-tsync5)<64%and go through the procedure of state 0
 if din(tin) >=max
 max =din(tin);
 tsync5 =tin;

 94

 %no reset for the next step
 %else
 %no store of min for the next step
 end
 state =4;
 sync = 0;
 %The criterion chosen in case 3
 tsync(5+k) =(tsync4+tsync1)/2;
 else
 sync = 1;
 state =5;
 %Choose a criterion for final time
 tsync_plot(5+kk) =tsync5; % Store time that the decision
 % is taken
 tsync(5+k) =(tsync3+tsync4)/2; % Timing decision
 max = min;
 end
 total_sync =0;
 case 5 %Stay locked waiting for the whole packet
 %to finish.
 if (tin-tsync5)< 7872-12%the time to complete the reception of
 %128 bits given that tsync5 corresponds to
 %the 5th bit of the packet.
 total_sync =1;%The preamble (up to the fifth
 %bit)has been successfully located.
 state =5;
 sync = 0; %Lock the timing information.
 else %Preparation to start over.
 if (tin-tsync5)< 7872+32
 total_sync =0;
 state =5;
 sync =0;
 else %Start over with the following parameters:
 state =0;
 total_sync =0;
 sync = 0;
 max =0;
 min =0;
 k =k+6;%point counter of tsync
 kk =kk+6;%point counter of tsync_plot
 %tsync(6+k) =tsync5;
 %tsync1 =tin;
 end
 tsync(6+k) =tsync5;
 tsync1 =tin;
 end
 otherwise%escape state from unexpected condition.
 state = 0;
 sync = 0;
 tsync(k) =0;
 total_sync =0;
end
end
subplot(2,1,2),plot(tsync_plot,ones(1,length(tsync_plot)),.’')
title('Preamble Detection Signal(tsync)')

 95

xlabel('time(sec)')
ylabel('amplitude')
xlim([0 simulation_length])
ylim([0 1.5])
tsync_final =mod(tsync+23,64);
figure(2)
plot(tsync_final)

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

LIST OF REFERENCES

[1] J. Mitola, I11, “Software Radios Survey, Critical Evaluation and Future

Directions,” IEEE AES Systems Magazine, April 1993.

[2] Friedrich K. Jondral, “Software-Defined Radio: Basics and Evolution to
Cognitive Radio,” EURASIP Journal on Wireless Communications and
Networking, vol. 5, Issue 3, pp. 275 - 283, 2005.

[3] Chris Dick, “A Case for Using FPGAs in SDR PHY,” Chief DSP Architect and
Director, Xilinx Inc., http://www.eetimes.com/story/OEG20020809S0049
(Accessed September 17, 2008).

[4] Bernard Sklar, Digital Communications: Fundamentals and Applications, 2nd
edition, Prentice Hall, 2001.

[5] Ralph Robertson, Notes for EC3510 (BFSK), Naval Postgraduate School, 2007,
(Unpublished).

[6] Michael Rice, Digital Communications: A Discrete-Time Approach, Pearson
Prentice Hall, 2008, p. 434.

[7] P. Elias, “Coding for Noisy Channels,” IRE Conv. Rec., 1955, pp. 4:37-47.

[8] Amphion Data Sheet,
digchip.com/datasheets/download_datasheet.php?id=240970&part-
number=CS3311AA (Accessed September 17, 2008).

[9] A.J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm,” IEEE Trans. Inform. Theory, IT-13: 260-69,
April 1967.

[10] Shu Lin and Daniel J. Costello, Error Control Coding, Prentice Hall, 2004.

[11] Xilinx online documentation, ISE Design Suite 10.1 – ISE Foundation,
http://www.xilinx.com/publications/prod_mktg/pn0010867.pdf (Accessed
September 17, 2008).

[12] Xilinx Online Documentation, System Generator for DSP, Getting Started Guide,
Release 10.1.2, June 2008,
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_gs.pdf
(Accessed September 17, 2008).

 98

[13] Xilinx Online Documentation, System Generator for DSP, Reference Guide,

Release 10.1.2, June 2008,
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_ref.pdf
(Accessed September 17, 2008).

[14] Xilinx Online Documentation, IP Cores Documentation,
http://www.xilinx.com/support/documentation/ipcores_docs.htm (Accessed
September 17, 2008).

[15] Xilinx Online Documentation, Xilinx ISE Overview,
http://toolbox.xilinx.com/docsan/xilinx10/isehelp/isehelp_start.htm (Accessed
September 17, 2008).

[16] Avnet, Xilinx® Virtex™-4 LX LC Development Kit,
http://www.em.avnet.com/evk/home/0,1719,RID%253D0%2526CID%253D2543
7%2526CCD%253DUSA%2526SID%253D32214%2526DID%253DDF2%2526
LID%253D32232%2526BID%253DDF2%2526CTP%253DEVK,00.html
(Accessed September 17, 2008).

[17] Avent Electronics Marketing,
http://www.em.avnet.com/ctf_shared/evk/df2df2usa/MemecP160AnalogModule.pdf
(Accessed September 17, 2008).

[18] Universitetet i Stavanger, Norway,
http://www.ux.uis.no/~karlsk/MIK200/dok/P160Analog_UserGuide_1_2.pdf
(Accessed September 17, 2008).

[19] Xilinx Online Documentation, Manuals and Help,
http://toolbox.xilinx.com/docsan/xilinx10/books/manuals.pdf (Accessed
September 17, 2008).

[20] Xilinx Online Documentation, System Generator for DSP Help Page,
http://www.xilinx.com/support/documentation/sw_manuals/sysgen_bklist.pdf.
(Accessed September 17, 2008).

[21] Xilinx Online Documentation, IP Release Notes Guide,
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf
(Accessed September 17, 2008).

[22] Xilinx Online Documentation, DDS Documentation
http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf
p. 20, (Accessed September 17, 2008).

[23] Xilinx Online Documentation, Virtex-4 Family Overview
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf (Accessed
September 17, 2008).

 99

[24] Dimitris G. Manolakis, Dimitris Manolakis, Vinay K. Ingle, and Stephen M.

Kogon, Statistical and Adaptive Signal Processing, Artech House, 2005.

[25] Michael Rice, Digital Communications: A Discrete-Time Approach, Pearson
Prentice Hall, 2008, p. 411.

[26] John G. Proakis, Digital Communications, Fourth Edition, McGraw-Hill, 2000.

[27] Simon Haykin and Michael Moher, Introduction to Analog & Digital
Communications, Wiley, 2nd edition, 2007, pp. 233-244.

[28] Cryptologic Research Laboratory, Research Associate Donna Miller, Code EC,
Monterey, CA.

[29] Xilinx, http://www.xilinx.com/company/history.htm (Accessed September 17,
2008).

[30] William S. Carter, “The Dramatic Changes in FPGA Technology,” Vice President
and Chief Technology Officer, Xilin Inc.
http://www.techonline.com/learning/course/100043 (Accessed September 17,
2008).

[31] FPGA-guide.com, http://www.fpga-guide.com/technology_frame.html (Accessed
September 17, 2008).

[32] Ruđer Bošković Institute,
http://www.irb.hr/en/cir/education/courses/fpga/FPGA/fpga_sklopovi/ (Accessed
August 9, 2008).

[33] Actel’s Presentation, “ProAsic3Actel’s 3rd Generation Flash FPGA Family,” in
NPS Course EC3800, Instructor Peter Ateshian, September 2007.

[34] The 3-D Circuits & Systems Group @ MIT, MIT Webpage,
http://mtlweb.mit.edu/researchgroups/icsystems/3dcsg/ (Accessed August 9,
2008).

[35] Gina R. Smith, “The art of FPGA Construction,” CEO, Brown-Smith Research
and Development Laboratory Inc. http://www.embedded.com/design/
embeddedfpga/205203954 (Accessed September 17, 2008).

[36] Rodger Hosking and Richard Kuenzler, “Embedding FPGAs in DSP-driven
Software Defined Radio Applications,” Vice Pres., Pentec Inc.,
http://www.embedded.com/columns/technicalinsights/164302833 (Accessed
September 17, 2008).

 100

[37] Paul Ekas, “FPGAs versus DSPs: Effective Implementations of 3G Basestations,”

Tech Rep., Altera Corp., http://www.eetimes.com/story/OEG20021107S0025.
(Accessed September 17, 2008).

[38] Rick Mosher, “FPGA to ASIC Strategy for Communication SoC Designs,” AMI
Semiconductor, http://www.design-reuse.com/articles/4360/fpga-to-asic-strategy-
for-communication-soc-designs.html (Accessed September 17, 2008).

[39] William Wong, “Embedded 32-Bit Cores Hit 1 GHz,” Electronic Design
Magazine, October 2007, http://electronicdesign.com/Articles/ArticleID/
17279/17279.html (Accessed September 17, 2008).

[40[Xilinx, Virtex-5 Multi-Platform FPGA,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/index.htm
(Accessed September 17, 2008).

[41] Altera, Stratix III Device Family, http://www.altera.com/products/devices/stratix-
fpgas/stratix-iii/st3-index.jsp (Accessed September 17, 2008).

[42] Altera, “Altera Announces Industry’s First 40-nm FPGAs and HardCopy ASICs,”
Press Release, http://www.altera.com/corporate/news_room/releases/products/nr-
stratix-iv-hardcopy-iv.html (Accessed September 17, 2008).

[43] “FPGAs vs. DSPs: A Look at the Unanswered Questions,” BTDI,
http://www.dspdesignline.com/howto/196802403;jsessionid=UJ5L5KRC31QFW
QSNDLPSKH0CJUNN2JVN?pgno=1 (Accessed September 17, 2008).

[44] Jerry Bickle, “Achieving Optimized Portable Code through SDR MDD Tools,”
Tech. Rep., PrismTech Corporation,
,http://www.portabledesign.com/article?article_id=38. (Accessed September 17,
2008).

[45] Actel, Cortex-M1 Processor, The ARM® Processor Designed for FPGAs,
http://www.actel.com/products/mpu/cortexm1/default.aspx (Accessed August 9,
2008).

[46] Xilinx Inc.,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/
capabilities/PowerPC_440.htm (Accessed August 9, 2008).

[47] Intel, Online Page,
http://www.intel.com/technology/atom/index.htm?iid=tech_micro+atomand
(Accessed September 17, 2008).

[48] Via, VIA Nano™ Processor, http://www.via.com.tw/en/products/processors/nano/
(Accessed August 9, 2008).

 101

[49] Texas Instruments, Fixed Point Digital Signal Processor,

http://focus.ti.com/docs/prod/folders/print/tms320c6455.html (Accessed August
9, 2008).

[50] Freescale Semiconductor Inc., “MSBA8100: Multi-Standard Baseband
Accelerator,”
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MSBA8100
(Accessed August 9, 2008).

[51] Carolyn Mathas, “Benchmark Scores Validate Freescale DSP,”
http://www.networksystemsdesignline.com/showArticle.jhtml;jsessionid=RHQP
W2E52ORZ2QSNDLPCKHSCJUNN2JVN?articleID=192203535 (Accessed
September 17, 2008).

[52] “FPGAs vs. DSPs: A Look at the Unanswered Questions,” BTDI,
http://www.dspdesignline.com/howto/196802403;jsessionid=UJ5L5KRC31QFW
QSNDLPSKH0CJUNN2JVN?pgno=1 (Accessed September 17, 2008).

[53] Douang Phanthavong, “Fast Track to DSP,” Product Marketing Engineer, Mentor
Graphics Corporation, Revised August 2006,
http://www.mentor.com/techpapers/fulfillment/upload/mentorpaper_11937.pdf
(Accessed September 17, 2008).

[54] Rodger Hosking and Richard Kuenzler, “Embedding FPGAs in DSP-driven
Software Defined Radio Applications,” Vice Pres., Pentec Inc.
http://www.embedded.com/columns/technicalinsights/164302833 (Accessed
September 17, 2008).

[55] Dave Locke, “Do Legwork before Making ASIC Move,” Marketing Manager,
AMI Semiconductor,
http://www.commsdesign.com/showArticle.jhtml;jsessionid=Z2YXAEAYXQ4A
SQSNDLPCKH0CJUNN2JVN?articleID=16503876 (Accessed September 17,
2008).

[56] Arun Kottolli, “The Economics of Structured- and Standard-Cell-ASIC Designs,”
Technical Solutions Engineer, Open-Silicon,
http://www.edn.com/article/CA6313388.html (Accessed September 17, 2008).

[57] Vaughn Betz, “FPGAs and Structured ASICs Overview & Research Challenges,”
Director, Software Engineering, Altera Corp.,
www.iic.umanitoba.ca/docs/vaughn-
betz.ppt?PHPSESSID=1b34dbb389a16a17339c6dd60acde5c4 (Accessed
September 17, 2008).

 102

[58] Hong-Swee Lim, “High Performance DSP Solutions for Ultrasound,” Tech. Rep.,

Xilinx, http://www.eetchina.com/STATIC/PDF/200805/EETC-
CMET.pdf?SOURCES=DOWNLOAD (Accessed September 17, 2008).

[59] Xilinx Online Page,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/capabilities
/dsp48e.htm (Accessed September 17, 2008).

[60] Steve Bush, “Altera FPGAs Get ColdFire Soft Core,” Technology Editor,
electronicsweekly.com,
http://www.electronicsweekly.com/Articles/2008/06/09/43894/altera-fpgas-get-
coldfire-soft-core.htm (Accessed September 17, 2008).

[61] Xilinx Online Page, PowerPc 440 / Virtex 5,
http://www.xilinx.com/products/silicon_solutions/fpgas/virtex/virtex5/capabilities
/PowerPC_440.htm (Accessed September 17, 2008).

[62] Xiaojun Wang and Nelson, B.E., Field-Programmable Custom Computing
Machines, 2003, FCCM 2003, 11th Annual IEEE Symposium on 9-11 April
2003, pp. 195 – 203.

[63] Alex Soohoo, “Do's and Don'ts of Architecting the Right FPGA Solution for DSP
Design,” Tech. Rep., Altera,
http://www.pldesignline.com/showArticle.jhtml;jsessionid=DCNXFCN2NQTSIQ
SNDLPCKHSCJUNN2JVN?articleID=170702837 (Accessed September 17,
2008).

[64] Tom Hill, “Heterogeneous Hardware Platforms Capitalize on DSP/FPGA
Capabilities,” Tech. Rep., Xilinx, http://www.dsp-fpga.com/articles/id/?2900
(Accessed September 17, 2008).

[65] David Lau, Jarrod Blackburn, and Joel A. Seely, “The Use of Hardware
Acceleration in SDR Waveforms,” Tech Rep., Altera,
http://www.altera.com.cn/literature/cp/cp_sdr_hardware_acceleration.pdf
(Accessed September 17, 2008).

[66] Jeffry Milrod, “Hybrid FPGA/DSP architecture: The Optimal Solution,”
President, Bittware, Inc., http://www.dsp-fpga.com/pdfs/BittWare.RG06.pdf
(Accessed September 17, 2008).

[67] Alex Soohoo, “Architecting the right FPGA Solution for Your DSP Design,”
September 15, 2005, Embedded.com,
http://www.embedded.com/columns/technicalinsights/170703025 (Accessed
September 17, 2008).

 103

[68] Jeffry Milrod, “The Future of High-Performance COTS Signal Processing:

Hybrid FPGA/DSP Architecture: The Optimal Solution,” DSP-F_GA.com, 2006,
http://www.dsp-fpga.com/pdfs/BittWare.RG06.pdf (Accessed September 17,
2008).

[69] Texas Instruments, “Texas Instruments’ Software Defined Radio Development
Platform Makes Rapid Development and Optimization of Multi-Protocol Radios
Possible,” Press Release,
http://focus.ti.com/docs/pr/pressrelease.jhtml?prelId=sc06196 (Accessed
September 17, 2008).

[70] David Pellerin and Scott Thibault, Practical FPGA Programming in C, Prentice-
Hall, Inc., April 2005.

[71] Easic, nextreme2, “Nextreme-2 NEW ASIC Overview,”
http://www.easic.com/index.php?p=nextreme2-overview (Accessed September
17, 2008).

[72] Easic, Technology Overview, http://www.easic.com/index.php?p=technology
(Accessed August 9, 2008).

[73] Easic, nextreme Structured ASIC,
http://www.easic.com/pdf/asic/nextreme_asic_structured_asic.pdf (Accessed
August 9, 2008).

[74] picoChip, picoGcc Reference Manual,
http://www.picochip.com/downloads/picoGcc_reference_manual.pdf (Accessed
September 17, 2008).

[75] picoChip, picoArrary Architecture,
http://www.picochip.com/products_and_technology/picoarray_architecture
(Accessed August 9, 2008).

[76] David Lipets, “Hardware Needs Limit Software Radio,” Tadiran Communications
Ltd, March 7, 2008,
http://www.rfdesignline.com/206902442;jsessionid=J4XHRTBWNOPIIQSNDLP
CKH0CJUNN2JVN (Accessed September 17, 2008).

[77] Jeffrey H. Reed, Software Radio, A Modern Approach to Radio Engineering,
Prentice Hall, 2002.

 104

THIS PAGE INTENTIONALLY LEFT BLANK

 105

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Assistant Professor Frank Kragh
Naval Postgraduate School
Monterey, California

4. Instr. Peter Ateshian
Naval Postgraduate School
Monterey, California

5. Prof. Roberto Cristi
Naval Postgraduate School
Monterey, California

6. Assistant Professor Alexander Julian
Naval Postgraduate School
Monterey, California

7. Prof. Herschel Loomis
Naval Postgraduate School
Monterey, California

8. Prof. Alan Ross
Naval Postgraduate School
Monterey, California

9. Research Associate Donna Miller

Naval Postgraduate School
Monterey, California

